UNIVERSITY OF SASKATCHEWAN

Department of Physics and Engineering Physics
Physics 115.3 General Physics
FINAL EXAMINATION
December 11, 2009
Time: 3 hours
NAME: \qquad STUDENT NO. \qquad

LECTURE SECTION (please check):

\square	01	B. Zulkoskey
\square	02	Dr. K. McWilliams
\square	03	Dr. A. Robinson
\square	C15	F. Dean

INSTRUCTIONS:

1. You should have a test paper, a formula sheet, and an OMR sheet. The test paper consists of 11 pages. It is the responsibility of the student to check that the test paper is complete.
2. Enter your name and STUDENT NUMBER on the OMR sheet.
3. The test paper, the formula sheet and the OMR sheet must all be submitted.
4. None of the test materials will be returned.
5. This is a closed book examination.
6. Only Hewlett-Packard HP 10 S or 30 S or Texas Instruments TI-30X series calculators may be used.

ONLY THE FIVE PART B QUESTIONS THAT YOU INDICATE WILL BE MARKED PLEASE INDICATE WHICH FIVE PART B QUESTIONS ARE TO BE MARKED

QUESTION NUMBER	TO BE MARKED	MAXIMUM MARKS	MARKS OBTAINED
A1-25	-	25	
B1	\square	10	
B2	\square	10	
B3	\square	10	
B4	\square	10	
B5	\square	10	
B6	\square	10	
B7	\square	10	
TOTAL		75	

continued on page $2 \ldots$
\qquad

PART A

For each of the following questions in Part A, enter the most appropriate response on

 THE OMR SHEET.A1. If the radius of a circle is decreased by 8.0% the area of the circle decreases by $r_{2}=r_{1}(1-0,08)$
(A) 4.0%
(B) 8.0%
(C) 12%
(D) 15%
(E) $64 \% \quad r_{2}=0.92 r_{1}$
$A_{2}=\pi r_{2}^{2}=\pi\left(0.92 r_{1}\right)^{2}$
$\begin{aligned} A_{2} & =\pi r_{2}^{2}\end{aligned}=\pi\left(0.92 r_{1}\right) \quad$ The speed of sound in a gas is given by $u=\sqrt{\frac{2 k_{8} T}{m}}$, where v is speed in $m / s, \gamma$ is a $A_{2}=0.25 A_{1}$, dimensionless constant, T is temperature in kelvins (K) and m is mass in kg . What are the units for the Boltzmann constant, k_{B} ?
(A) $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{2} \cdot \mathrm{~K}$
(B) $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}$
(C) $\mathrm{kg}^{-1} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~s}^{2} \cdot \mathrm{~K}$
(D) $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$
(E) $\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$
$\left[k_{B}\right]=\frac{[u]^{2}[m]}{[T]}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2} \cdot k}$

A3. A little boy on a sled is sliding down a hill at the park. Which one of the following statements concerning the friction force between the sled and the snow is TRUE?
B (A) The friction force acts in the direction of motion. F
(B) The friction force is proportional to the normal force exerted on the sled by the snow. T
(C) The friction force acts perpendicularly to the direction of motion. F
(D) The friction force must be zero. F
(E) The friction force is a static friction force. F

A4. Which one of the following statements is FALSE?
(A) An object in translational equilibrium may be at rest. T
(B) An object in translational equilibrium may be moving at constant velocity. T
(C) An object in translational equilibrium my be moving in uniform circular motion. F
(D) The net force on an object in translational equilibrium is zero. T
(E) An object in translational equilibrium may have zero kinetic energy. T

A5. Consider a rock that is thrown vertically upward. At the instant that the rock reaches its maximum height, the acceleration of the rock is
(A) 0 .
(B) g downward.
(C) g upward.
(D) less than g, downward.
(E) dependent on whether or not there is air resistance.

A6. A figure skater is spinning with arms outstretched, when the strap of her wristwatch breaks. Which one of the following statements best describes the motion of the wristwatch, as viewed from above?
(A) It orbits around the skater as if the strap had not broken.
E
(B) It spirals inward toward the skater.
(C) It moves off in an ever-widening arc.
(D) It orbits around the skater at a fixed radius with decreasing speed.
(E) It moves away from the skater along a straight-line trajectory, tangent to its original circular trajectory.

A7. Which of the following methods of moving a box from the ground to the back of a truck requires the least amount of total work to be done on the box? Initially the box is at rest on the ground and finally it is at rest in the back of the truck.
(A) Slowly lifting the box vertically.
(B) Slowly sliding the box up a frictionless ramp.
(C) Rapidly lifting the box vertically.
(D) Rapidly sliding the box up a frictionless ramp.
(E) All of the above methods involve the same amount of total work.

A8. Geo-stationary satellites orbit at an altitude that ensures that they remain above the same position on the Earth's surface at all times. The period of a satellite in a geo-stationary orbit is
(A) 1.0 hour.
(B) 24 hours.
(C) 365 days.
(D) 28 days.
(E) dependent on the mass of the satellite.

A9. An object of mass m moving with a speed v has a perfectly inelastic collision with an object of mass $2 m$. The speed of the objects immediately after the collision is... $m v=(m+2 m) v_{f}$
A (A) $\frac{v}{3}$.
(B) $\frac{v}{2}$.
(C) 0 .
(D) $2 v$.
(E) $3 v$.
$v_{f}=\frac{1}{3} v$

A10. A metallic sphere has a net charge of +4.0 nC . A negatively-charged rod has a net charge of -6.0 nC . When the rod touches the sphere 8.2×10^{9} electrons are transferred to the sphere. What
$D \quad$ is the new net charge on the sphere? $+4.0 \times 10^{-9} \mathrm{C}+8.2 \times 10^{9}\left(-1.602 \times 10^{-19} \mathrm{C}\right)$
(A) -2.0 nC
(B) -4.7 nC
(C) -2.7 nC
(E) $+4.0 \mathrm{nC}=+2.7 n \mathrm{C}$

A11. The magnitude of the electrostatic force between two charged particles is F. If the distance between the two particles is doubled and the charge on one of the particles is also doubled then the magnitude of the new electrostatic force will be ...

$$
F=k\left|q_{1}\right|\left|q_{2}\right| / r^{2}
$$

(A) $\frac{F}{4}$.
(B) $\frac{F}{2}$.
(C) F.
(D) $2 F$.
(E) $4 F$.

A12. Consider a charge $+Q$. Located directly West of this charge is a charge $-Q$. The net electric field at the point along the line connecting the two charges and midway between them is...
(A) 0.
(B) directed to the West.
(D) directed to the North.
(E) directed to the South.
A13. Which one of the following statements concerning electric fields is FALSE?

(A) The electric force on a negatively-charged particle is in the opposite direction to the electric field. T
C (B) The SI unit of electric field can be written as N/C. T
(C) Electric field is a scalar quantity. F
(D) The SI unit of electric field can be written as V / m. T
(E) The electric field is defined as the force per unit charge. T

A14. The electric field at a distance R from a charged particle has magnitude E. If the distance from the charged particle is increased to $3 R / 2$, what is the new magnitude of the electric field in terms of E ?
E
(A) $\frac{3 E}{2}$
(B) $\frac{2 E}{3}$
(C) $\frac{9 E}{2}$
(D) $\frac{9 E}{4}$
(E) $\frac{4 E}{9}$
$E_{1}=\frac{k \mid g 1}{R^{2}}$
E_{2}
$\mathrm{kla} /(3 \mathrm{R} / 2)^{2}$

A15. A tiny charged object of mass m is at rest in midair between two plates. The top plate is negatively-charged and the lower plate is positively-charged. Which one of the following statements is TRUE?

$$
E_{2}=\frac{4}{9} \frac{\mathrm{k}|\mathrm{q}|}{R^{2}}
$$

(A) The electric field between the plates points downward. F

D
(B) The object is negatively-charged. F
(C) The electric field between the plates is directed parallel to the plates. F
(D) The magnitude of the electric force on the object is equal to mg . T
(E) The two plates are at the same potential. F

A16. A piece of conducting wire has a resistance R. Another piece of wire of the same material is twice as long and has twice the diameter. The resistance of the second piece of wire is.-
A
(A) $\frac{1}{2} R$.
(B) $2 R$.
(C) $4 R$.
(D) $\frac{1}{4} R$.
(E) R 。
$\dot{R}_{1}=\rho \frac{L_{1}}{A_{1}}$
A17. Which one of the following statements concerning electrical potential energy is FALSE? $R_{1}=\frac{\rho L_{1}}{\pi R_{1}^{2}}$
(A) Electrical potential energy is a scalar quantity. T
(B) A positive charge gains electrical potential energy if it moves toward another positive $\quad \rho\left(2 L_{1}\right)$
charge. T
(C) A negative charge gains electrical potential energy if it moves toward another negative $\pi\left(2 R_{1}\right)^{2}$ charge. T
(D) A negative charge can never have a positive change in electrical potential energy. $F R_{2}=\frac{2}{4} \frac{\rho L_{1}}{\pi R_{1}^{2}}$
(E) Electrical potential energy changes if a charge is accelerated by a potential difference.
(E) Electrical potential energy changes if a charge is accelerated by a potential difference. ${ }^{2} \quad \overline{4} \pi R_{1}^{2}$ continued on page $4 . . . R_{2}=\frac{1}{2} R_{1}$

A18. A positively-charged particle initially moving North enters a region where there is a magnetic field directed down. The initial direction of the magnetic force on the charged particle is...
(A) East.
(B) West.
(C) down.
(D) up.
(E) south.

A19. The magnetic force on a point charge in a magnetic field is greatest when... W
(A) the charge moves in the direction of the magnetic field. F
(B) the charge moves perpendicular to the direction of the magnetic field. T
(C) the charge moves in the opposite direction of the magnetic field. F
(D) the charge is at rest. F
(E) the velocity of the charge has components that are both parallel and perpendicular to the magnetic field. F

A20. The graph shows the variation in radiation intensity per unit wavelength versus wavelength for a perfect blackbody at temperature T. Correctly complete the following statement: As the temperature of the blackbody is increased, the peak in intensity of this curve...
(A) will remain constant.
(B) will be shifted to longer wavelengths C C and its magnitude will increase.
(C) will be shifted to shorter wavelengths and its magnitude will increase.
(D) will be shifted to longer wavelengths and its magnitude will decrease.
(E) will be shifted to shorter wavelengths and its magnitude will decrease.

A21. If a photoelectric material has a work function ϕ, the threshold wavelength for the material is given by:
(A) $\frac{\phi}{h c}$
(B) $h f$
(C) $\frac{h c}{\phi}$
(D) $\frac{\phi}{e}$
(E) $\frac{\phi}{h f}$
$k_{\max }=h f-\varnothing$

\qquad

PART B

ANSWER FIVE PaRT B QUESTIONS AND INDICATE YOUR CHOICES ON THE COVER PAGE.
In each of the Part B questions on the following pages, give the complete solution and enter the final answer in the box provided. The Answers must contain three significant figures and the units must be given. Show and Explain Your Work -No credit will be GIVEN FOR ANSWERS ONLY. EQUATIONS NOT PROVIDED ON THE FORMULAE SHEET MUST BE DERIVED. USE THE BACK OF THE PREVIOUS PAGE FOR YOUR ROUGH WORK.

B1. While deciding where to hang a picture frame, you press it against the wall to prevent it from falling. The frame weighs 5.14 N and you push on it with the minimum force of 6.05 N at an angle of 40.5° from the vertical, in order to just prevent the frame from falling.
(a) $O^{\text {The diagram below shows a side view of the frame and the wall. The pushing force is }}$ shown. Draw all the other forces acting on the frame and show your choice of coordinate system. (4 marks)

(b) Calculate the coefficient of static friction between the frame and the wall. (6 marks)

$$
\text { Frame remains at rest, } \sum \vec{F}=0
$$

$$
0.137
$$

$$
\begin{array}{ll}
\sum F_{x}=0 & \sum F_{y}=0 \\
+F_{\text {push } x}+N_{x}=0 \quad & f_{s, \text { max } y}+F_{\text {push } y}+W_{y}=0 \\
+F_{\text {push }} \sin \theta-N=0 & +f_{s, \text { max }}+F_{\text {push }} \cos \theta-W=0 \\
N=F_{\text {push }} \sin \theta & \mu_{s} N+F_{\text {push }} \cos \theta-w=0 \\
\mu_{5}=\frac{w-F_{\text {push }} \cos \theta}{N} \\
\mu_{5}=\frac{W-F_{\text {push }} \cos \theta}{F_{\text {pash }} \sin \theta}=\frac{5.14 N-6.05 N \cos \left(40.5^{\circ}\right)}{6.05 N \sin \left(40.5^{\circ}\right)} \\
\mu_{5}=\frac{0.137}{}
\end{array}
$$

B2. (a) A 0.454 kg mass is suspended vertically from an ideal spring. The mass stretches the string) from its relaxed length of 6.67 cm to a total length of 7.95 cm . Calculate the spring constant of the spring. (4 marks)

\square
$348 \mathrm{~N} / \mathrm{m}$
$\sum \vec{F}=0$
$F_{x}-W=0$
$k x-m g=0$

$$
k\left(x_{f}-x_{0}\right)=m g
$$

$$
k=\frac{\mathrm{mg}}{\left(x_{f}^{-x_{0}}\right)}=\frac{(0.454 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{(0.0795 \mathrm{~m}-0.0667 \mathrm{~m})}
$$

(b) The ideal spring with the same mass attached to it is then placed on a hop(zontal frictionless surface, and the spring is held fixed at the other end. The mass is pulled so that the spring stretches to a total length of 8.50 cm . The mass is then released and it oscillates back and forth. Calculate the maximum speed of the mass as it oscillates. (If you did not obtain an answer for (a), use $3.75 \times 10^{3} \mathrm{~N} / \mathrm{m}$.) (6 marks)

2

frictionless, so $W_{n c}=0$.

$$
k_{i}+u_{i}=k_{f}+u_{f}
$$

horizontal, so $U=U_{\text {elastic only }}$

$$
\begin{aligned}
& k_{i}+u_{\text {elastic i }}=k_{f}+u_{\text {elastic }} \\
& \frac{1}{2} m v_{i}^{2}+\frac{1}{2} k x_{i}^{2}=\frac{1}{2} m u_{i}^{2}+\frac{1}{2} k x_{f}^{2}
\end{aligned}
$$

$U_{\max }$ when Uelastic minimum, ie. when $x=0$.

$$
\begin{aligned}
& \therefore \frac{1}{2} k x_{i}^{2}=\frac{1}{2}{m N_{f}^{2}}_{2} \\
& v_{f}=x_{i} \sqrt{\frac{k}{m}}=(0.0850 \mathrm{~m}-0.0667 \mathrm{~m}) \sqrt{\frac{348 \mathrm{~N} / \mathrm{m}}{0.454 \mathrm{~kg}^{2}}} \\
& v_{f}=0.507 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

continued on page $7 . .$.

B3. A block of wood of mass 1.64 kg is at rest on a frictionless horizontal surface. A bullet of mass 0.0192 kg is fired at the block of wood. The bullet is moving horizontally with a speed of $325 \mathrm{~m} / \mathrm{s}$ when it strikes the block of wood. The bullet passes through the block of wood, emerging with a speed of $127 \mathrm{~m} / \mathrm{s}$.

(a) Calculate the speed of the block of wood after the bullet has passed through it. (4 marks)

Linear momentum is conserved.

$$
\begin{aligned}
& \vec{P}_{\text {tot }_{f}}={\overrightarrow{P_{t o t}}} \\
& m v_{f}+M v_{f}=m v_{i} \\
& V_{f}=\frac{m\left(v_{i}-U_{f}\right)}{M}=\frac{\left(0.0192 \mathrm{lg}_{g}\right)(325 \mathrm{~m} / \mathrm{s}-127 \mathrm{~m} / \mathrm{s})}{1.64 \mathrm{lg}} \\
& 2.32 \mathrm{~m} / \mathrm{s} \\
& V_{f}=2.32 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

After the bullet hos it,
(b) the block slides across the horizontal surface and encounters an area where the coefficient of kinetic friction between the block and the area is 0.111 . Calculate the distance that the block slides in this area before coming to rest. (If you did not obtain an answer for (a), use a value of $2.75 \mathrm{~m} / \mathrm{s}$.) (4 marks)

$$
\begin{aligned}
& k_{i}+u_{i}+w_{n c}=k_{f}+u_{f} \\
& k_{i}+f_{k} \Delta x \cos \left(180^{\circ}\right)=0 \\
& k_{i}=f_{k} \Delta x \\
& \Delta x=\frac{k_{i}}{f_{k}}=\frac{1}{2} M V_{f}^{2} \\
& \mu_{k} N
\end{aligned}
$$

(c) Calculate the mechanical energy that is dissipated in the bulletblock interaction. (If you did not obtain an answer for (a), use a value of $2.75 \mathrm{~m} / \mathrm{s}$.) (2 marks)

$$
\begin{gathered}
\Delta E=\Delta K=\frac{1}{2} M V_{f}^{2}+\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \square 855 \mathrm{~J} \\
\Delta E=\frac{1}{2}\left(1.64 \mathrm{~kg}(2.32 \mathrm{~m} / \mathrm{s})^{2}+0.0192 \mathrm{~kg}\left((127 \mathrm{~m} / \mathrm{s})^{2}-(325 \mathrm{~m} / \mathrm{s})^{2}\right)\right. \\
\Delta E=-855 \mathrm{~J} \\
|\Delta E|=855 \mathrm{~J}
\end{gathered}
$$

B4. The circuit diagram below represents the circuit in an $i P o d / m p 3$ player. Resistances R_{1}, R_{2} and R_{3} represent the processor, audio speakers and screen respectively. Resistance r is the internal resistance of the battery. The resistances have the following values: $\mathrm{R}_{1}=40.0 \Omega, \mathrm{R}_{2}=55.0 \Omega$, $\mathrm{R}_{3}=61.0 \Omega$ and $\mathrm{r}=1.20 \Omega$. The battery has an emf of 3.70 Volts.

(a) Calculate the current flowing through the internal resistance r. (5 marks)

Calculate Req.
0.206 A

$$
\begin{aligned}
& I=\frac{V}{R_{\text {eq }}}=\frac{V}{r+\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1}} \\
& I=\frac{3.70 \mathrm{~V}}{1.20 \Omega+16.79 \Omega}=0.206 \mathrm{~A}
\end{aligned}
$$

(b) Calculate the total power dissipated in the circuit. (If you did not obtain an answer for (a), use a value of 0.150 A .) (2 marks)

$$
\begin{aligned}
& P=V I \\
& P=(3.70 \mathrm{~V})(0.206 \mathrm{~A})=0.761 \mathrm{~W}
\end{aligned}
$$

(c) If the battery has a rating of 1.40 Amp -hours, how long can the player be left on until the battery is completely drained? (3 marks)

$$
\begin{aligned}
& \Delta q=1.40 \mathrm{~A} \cdot \mathrm{~h} \times \frac{3600 \mathrm{~s}}{\mathrm{~h}}=5040 \mathrm{C} \quad \frac{2.45 \times 10^{4} \mathrm{~s} \text { or }}{6.80 \mathrm{~h}} \\
& I=\frac{\Delta q}{\Delta t} \Rightarrow \Delta t=\frac{\Delta q}{I}=\frac{5040 \mathrm{C}}{0.206 \mathrm{~A}}=2.45 \times 10^{4} \mathrm{~s} \\
& \Delta t=2.45 \times 10^{4} \mathrm{~s} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=6.80 \mathrm{~h}
\end{aligned}
$$

\qquad
December 11, 2009; Page 9
B5. An alpha particle (charge of $+2 e$) with a mass of $6.64 \times 10^{-27} \mathrm{~kg}$ is travelling with a speed of $12.3 \mathrm{~m} / \mathrm{s}$ when it enters a slit in a plate. The alpha particle accelerates toward a second plate that is at a potential of 305 V lower than the first plate.
(a) Calculate the speed of the alpha particle after it passes through a slit in the second plate.
(4 marks)

$$
\begin{aligned}
& \longrightarrow V_{1}=305 \mathrm{v} \text { Apply Cons. of Energy. } 1.72 \times 10^{5} \mathrm{~m} / \mathrm{s} \\
& \underbrace{v_{1}}_{v_{2}} \begin{array}{l}
E_{1}=E_{2} \\
k_{2}+u_{1}=k_{2}+u_{2} \\
k_{1}+q v_{1}=k_{2}+q v_{2} \\
k_{1}+q v_{1}=k_{2}
\end{array} \\
& \frac{1}{2} m v_{1}^{2}+q V_{1}=\frac{1}{2} m v_{2}^{2} \\
& v_{2}=\sqrt{v_{1}^{2}+\frac{2 q}{m} v_{1}}=\sqrt{(12.3 \mathrm{~m} / \mathrm{s})^{2}+\frac{2\left(3.204 \times 10^{-19} \mathrm{c}\right)}{6.64 \times 10^{-27} \mathrm{~kg}}(305 \mathrm{v})} \\
& v_{2}=1.72 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) After passing through the slit in the second plate the alpha particle enters a region where there is a magnetic field of 0.185 T directed perpendicular to the alpha particle's velocity. Calculate the radius of the alpha particle's trajectory while it is in the magnetic field. (If you did not obtain a value for (a), use $1.50 \times 10^{5} \mathrm{~m} / \mathrm{s}$.) (6 marks)

B6. Ultraviolet light of wavelength 226 nm illuminates a metal surface in a phototube and electrons are ejected. A stopping potential of 1.15 V is able to just prevent any of the ejected electrons from reaching the opposite electrode.
(a) Calculate the work function of the metal surface. (3 marks)

$$
\begin{gathered}
V_{\text {stop }}=1.15 \mathrm{~V} \Rightarrow k_{\text {max }}=1.15 \mathrm{eV} \quad 4.34 \mathrm{eV} \\
k_{\text {max }}=h f-\phi=\frac{h \mathrm{c}}{\lambda}-\phi \\
\phi=\frac{h c}{\lambda}-k_{\text {max }}=\frac{\left(4.136 \times 10^{-15} \mathrm{eV} .5\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{226 \times 10^{-9} \mathrm{~m}}-1.15 \mathrm{eV} \\
\phi=4.34 \mathrm{eV}
\end{gathered}
$$

(b) Calculate the maximum wavelength of photons that will cause electrons to be ejected from the metal. (If you did not obtain an answer for (a), use 4.50 eV .) (3 marks)

At threshold, $K_{\text {max }}=0$.

$$
\begin{aligned}
& h f_{0}-\phi=\frac{h c}{\lambda_{0}}-\phi=0 \\
& \frac{h c}{\lambda_{0}}=\varnothing \Rightarrow \lambda_{0}=\frac{h c}{\phi} \\
& \lambda_{0}=\frac{\left(4.136 \times 10^{-15} \mathrm{eV} .5\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{4.34 \mathrm{eV}}=2.86 \times 10^{-7} \mathrm{~m} \\
&=286 \mathrm{~nm}
\end{aligned}
$$

(c) Calculate the maximum speed of the ejected electrons. (4 marks)

$$
\begin{aligned}
k_{\text {max }} & =\frac{1}{2} m v_{\text {max }}^{2} \\
v_{\text {max }} & =\sqrt{\frac{2 k_{\text {max }}}{m}} \\
v_{\text {max }} & =\left(\frac{2(1.15 \mathrm{eV})\left(1.602 \times 10^{-19} \mathrm{eV} / \mathrm{J}\right)}{9.109 \times 10^{-31} \mathrm{~kg}}\right)^{1 / 2} \\
\left(U_{\text {max }}\right. & =6.36 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

continued on page 11...

B7. In a scattering experiment, a photon of wavelength 0.0100 nm is incident on a stationary free electron. The scattered photon has a wavelength of $0.0+24 \mathrm{~nm}$.
(a) Calculate the scattering angle with respect to the direction of the incident photon. (4 marks)

Compton Scattering \square

$$
\begin{aligned}
& \lambda^{\prime}-\lambda=\frac{h}{m_{e} c}(1-\cos \theta) \\
& \frac{m_{e} c}{h}\left(\lambda^{\prime}-\lambda\right)=1-\cos \theta \\
& \cos \theta=1-\frac{m_{e} c}{h}\left(\lambda^{\prime}-\lambda\right) \\
& \cos \theta=1-\frac{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}}\left(0.0118 \times 10^{-9} \mathrm{~m}\right. \\
& \left.\theta=75.0 .0100 \times 10^{-9} \mathrm{~m}\right) \\
& \theta
\end{aligned}
$$

(b) Calculate the energies of both the incident and scattered photons. (3 marks)

$$
\begin{aligned}
& E=\left.\frac{h c}{\lambda}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} .5\right.}{}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) \text { incident: } 1.99 \times 10^{-14} \mathrm{~J} \\
& 0.0100 \times 10^{-9} \mathrm{~m} \\
&\left.E=1.99 \times 10^{-14} \mathrm{~J}\right)\left(1.988 \times 10^{-14} \mathrm{~J}\right) \\
& E^{\prime}= \frac{h c}{\lambda^{\prime}}=1.68 \times 10^{-14} \mathrm{~J} \\
& 1.68 \times 10^{-14} \mathrm{~J}\left(1.685 \times 10^{-14} \mathrm{~J}\right)
\end{aligned}
$$

(c) Calculate the kinetic energy of the free electron after the collision. (3 marks)

Cons. of Energy.

$$
3.03 \times 10^{-15} \mathrm{~J}
$$

$$
\begin{aligned}
& E=E^{\prime}+K_{e^{-}} \\
& K_{e^{-}}=E-E^{\prime}=1.988 \times 10^{-14} \mathrm{~J}-1.685 \times 10^{-14} \mathrm{~J} \\
& \quad K_{e^{-}}=3.03 \times 10^{-15} \mathrm{~J}
\end{aligned}
$$

PART B
ANSWER FIVE PaRT B QUESTIONS AND INDICATE YOUR CHOICES ON THE COVER PAGE.
In each of the Part B questions on the following pages, give the complete solution and enter the final answer in the box provided. The Answers must contain three significant figures and the units must be given. Show And Explain Your Work - No credit will be given for answers only. Equations not provided on the formulae sheet must be derived. USE THE BACK OF THE PREVIOUS PAGE FOR YOUR ROUGH WORK.

B1. The lunar module used in the Apollo moon landings had a mass of $1.53 \times 10^{4} \mathrm{~kg}$. Useful values for this problem: radius of moon $=1.74 \times 10^{6} \mathrm{~m}$, mass of moon $=7.36 \times 10^{22} \mathrm{~kg}$.
(a) Calculate the gravitational field strength (gravitational force per unit mass) at the surface of the moon. (3 marks)

$$
F_{\text {grave }}=\frac{G m_{1} m_{2}}{r^{2}}=m_{g_{\text {mom }}}
$$

$$
g_{\text {mam }}=\frac{G M}{R^{2}}=\frac{\left(6.674 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}\right)\left(7.36 \times 10^{22} \mathrm{~kg}\right)}{\left(1.74 \times 10^{6} \mathrm{~m}\right)^{2}}
$$

(b) Calculate the weight of the lunar module when on the surface of the moon. (2 marks)

$$
\begin{gathered}
W=m g \\
W=\left(1.53 \times 10^{4} \mathrm{lg}\right)(1.62 \mathrm{~N} / \mathrm{kg})=2.48 \times 10^{4} \mathrm{~N} \\
\end{gathered}
$$

(c) Calculate the change in gravitational potential energy when raising the lunar module from the surface of the moon to an orbit $8.00 \times 10^{4} \mathrm{~m}$ above the surface. (5 marks)

$$
\begin{aligned}
& \Delta u_{\text {gram }}=U_{\text {gran }}-U_{\text {gran }} ; \\
& 1.90 \times 10^{4} \mathrm{~J} \\
& \Delta u_{g r a n}=-\frac{G M_{m}}{r_{f}}-\left(-\frac{G M_{m}}{r_{i}}\right) \\
& \Delta U_{\text {draw }}=G M_{m}\left(\frac{1}{r_{i}}-\frac{1}{r_{f}}\right) \\
& \Delta U_{\text {gran }}=\left(6.674 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(7.36 \times 10^{22} \mathrm{~kg}\right)\left(1.53 \times 10^{4} \mathrm{~kg}\right) \cdot \\
& \Delta\left(\frac{1}{1.74 \times 10^{6} \mathrm{~m}}-\frac{1}{\left(1.74 \times 10^{6} \mathrm{~m}+8.00 \times 10^{4} \mathrm{~m}\right)} \operatorname{DU}_{\text {gran }}=\left(1.90 \times 10^{9} \mathrm{~J}\right)\right.
\end{aligned}
$$

\qquad

B2. An electron orbits a proton at constant speed v in a circle of radius r.
(a) Derive an expression for the orbit radius in terms of the Coulomb constant k, the elementary charge e, the mass of the electron m, and the electron speed v. (5 marks)

Newton II for Circular Motion
$r=k e^{2} / m v^{2}$

$$
\begin{gathered}
F_{r}=m a_{r} \\
\frac{k|e||-e|}{r^{2}}=\frac{m v^{2}}{F} \\
r=\frac{k e^{2}}{m v^{2}}
\end{gathered}
$$

(b) Calculate the radius of the orbit when the electron has a speed of $2.19 \times 10^{6} \mathrm{~m} / \mathrm{s} .(2 \mathrm{marks})$

$$
r=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{c}^{2}\right)\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}}=5.28 \times 10^{-11} \mathrm{~m}
$$

(c) Calculate the time for the electron to make one complete orbit around the proton when the electron has a speed of $2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}$. (If you did not obtain an answer for (b), use a value of $5.00 \times 10^{-14} \mathrm{~m}$.) (3 marks)

$$
\begin{aligned}
& v=\frac{2 \pi r}{T} \\
& T=\frac{2 \pi r}{v}=\frac{2 \pi\left(5.28 \times 10^{-11} \mathrm{~m}\right)}{2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}}=1.51 \times 10^{-16} \mathrm{~s} \\
&
\end{aligned}
$$

B3. A car has a mass of $2.15 \times 10^{3} \mathrm{~kg}$ and a velocity of $17.0 \mathrm{~m} / \mathrm{s}$. The car has a collision with a stationary car of mass $1.92 \times 10^{3} \mathrm{~kg}$. The two cars stick together after the collision, skidding across the road.
(a) Calculate the speed of the two cars immediately after the collision. (4 marks)

$$
8.98 \mathrm{~m} / \mathrm{s}
$$

Cons. of Linear Momentum.

$$
\begin{aligned}
& m_{A} v_{A i}+m_{B} v_{B i}=m_{A} v_{A f}+m_{B} v_{B f} \\
& m_{A} v_{A i}=\left(m_{A}+m_{B}\right) v_{f} \\
& v_{f}=\frac{m_{A} v_{A i}}{\left(m_{A}+m_{B}\right)}=\frac{\left(2.15 \times 10^{3} \mathrm{~kg}\right)(17.0 \mathrm{~m} / \mathrm{s})}{(2.15+1.92) \times 10^{3} \mathrm{~kg}}=8.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) Calculate the mechanical energy that is dissipated during the collision. (If you did not obtain an answer for (a), use a value of $8.50 \mathrm{~m} / \mathrm{s}$.) (4 marks)

$$
\begin{gathered}
\Delta E=\Delta K=k_{f}-K_{i} \\
\Delta E=\frac{1}{2}\left(m_{A}+m_{B}\right) v_{f}^{2}-\frac{1}{2} m_{A} v_{A i}^{2} \\
\Delta E=\frac{1}{2}\left((2.15+1.92) \times 10^{3} \mathrm{~kg}\right)(8.98 \mathrm{~m} / \mathrm{s})^{2} \\
-\frac{1}{2}\left(2.15 \times 10^{5} \mathrm{~J} \mathrm{~kg}\left(17.0 \mathrm{~m} / \mathrm{s}^{2}\right.\right. \\
|\Delta E|=1.47 \times 10^{5} \mathrm{~J}
\end{gathered}
$$

magnitude of the
(c) Calculate the impulse that acts on the skidding cars from the time just after the collision until they come to rest. (2 marks)

$$
\begin{aligned}
I_{\text {pulse }} & =\sum \vec{F} \Delta t=\Delta \vec{p} \\
\left|I_{\text {mpulse }}\right| & =|\Delta \vec{p}|=\left|\vec{p}_{f}-\vec{p}_{i}\right| \\
& =\left|0-\left(m_{A}+m_{B}\right)\left(v_{f}\right)\right| \\
& =\left((2.15+1.92) \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{kg}\right. \\
& =3.65 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

continued on page 8...

B4. The South American Black Ghost Knife Fish (Apteronotus albifrons), senses prey by generating a weak electric field around its body. The strength of this electric field is $0.300 \mathrm{~N} / \mathrm{C}$ at a point 10.0 cm directly in front of the fish (point A). In this problem you may neglect any electrical properties of water.

(a) If we were to approximate the electric field generated by the fish as being due to a single point charge located at point O , what would the magnitude and sign of that charge be? (5 marks)

$$
\begin{aligned}
& \vec{E}=\frac{k|Q|}{r^{2}} \text { to the right at } A . \quad+3.34 \times 10^{-3} \\
& \therefore Q \text { must be tue. } \\
& E=\frac{k|Q|}{r^{2}} \Rightarrow|Q|=\frac{E r^{2}}{k} \\
& |Q|=\frac{\left(0.300 \frac{\mathrm{~N}}{\mathrm{C}}\right)(0.100 \mathrm{~m})^{2}}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{c}^{2}}=3.34 \times 10^{-13} \mathrm{C}
\end{aligned}
$$

(b) If a point charge of $-2.00 \times 10^{-13} \mathrm{C}$ is present at point P (representing the prey), calculate the net electric potential at point A\$(5 marks)

$$
\begin{aligned}
& V_{A}=V_{A O}+V_{A P} \\
& V_{A}=\frac{k Q}{r_{O A}}+\frac{k q_{P}}{r_{P A}} \\
& V_{A}=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(+\frac{3.34 \times 10^{-3} \mathrm{~V}}{}=\left(\frac{70^{-13} \mathrm{C}}{0.100 \mathrm{~m}}+\left(-2.00 \times 10^{-13} \mathrm{C}\right)\right)(0.0800 \mathrm{~m})\right)
\end{aligned}
$$

B5. A particle with a mass of $6.64 \times 10^{-27} \mathrm{~kg}$ and a charge of magnitude of $3.20 \times 10^{-19} \mathrm{C}$ is accelerated from rest through a potential difference of $+2.45 \times 10^{6} \mathrm{~V}$.
(a) What is the sign of the charge? Justify your answer. (2 mark) Circle your choice and

A tue potential difference maris the potential is increasm. A charge justify your choice in the potential is increasing. A charge negative below. accelerates in the direction $1:$ which its electrical potential energy decreases.
\therefore from $\Delta U_{E}=q \Delta V$, since $U_{E} \downarrow$ when $V \uparrow$, q roost
(b) Calculate the speed of the particle after it has passed through the potential difference. negative (3 marks)

Energy is conserved.

$$
\begin{aligned}
& k_{i}+u_{i}=k_{f}+u_{f} \\
& 0+0=\frac{1}{2} m v_{f}^{2}+q v_{f} \\
& -q_{f}=\frac{1}{2} m v_{f}^{2} \\
& v_{f}=\sqrt{\frac{-2 q v_{f}}{m}}=\left(-\frac{2\left(-3.20 \times 10^{-19} \mathrm{~m} / \mathrm{s}\right)\left(2.45 \times 10^{6} \mathrm{v}\right)}{6.64 \times 10^{-27} \mathrm{~kg}}\right)^{1 / 2} \\
& u_{f}=1.54 \times 10^{7} \mathrm{~m} / \mathrm{s} \\
& 1.50 \mathrm{~V}
\end{aligned}
$$

(c) The particle then enters a uniform $160-\mathrm{T}$ magnetic field. The particle's velocity is perpendicular to the magnetic field at all times. Calculate the radius of the circular trajectory of the particle while it is in the magnetic field. (If you did not obtain an answer for (b) use a value of $1.40 \times 10^{7} \mathrm{~m} / \mathrm{s}$.) (5 marks)

$$
\begin{aligned}
& \vec{F}_{\text {mag }} \perp \vec{v} \Rightarrow \text { cricular motion } \\
& 0.213 \mathrm{~m} \\
& \Sigma F_{C}=m a_{r} \\
& F_{m a s}=\frac{m o r}{r} \\
& 1 q u B \sin \left(90^{\circ}\right)=\frac{m v^{2}}{r} \\
& r=\frac{\mathrm{mv}}{\lg \mathcal{B}}=\frac{\left(6.64 \times 10^{-27} \mathrm{~kg}\right)\left(1.54 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)}{\left.1-3.20 \times 10^{-19} \mathrm{c}\right)(1.50 \mathrm{~T})} \\
& r=0.213 \mathrm{~m}
\end{aligned}
$$

B6. Ultraviolet light of wavelength 226 nm illuminates a metal surface in a phototube and electrons are ejected. A stopping potential of 1.15 V is able to just prevent any of the ejected electrons from reaching the opposite electrode.
(a) Calculate the work function of the metal surface. (3 marks)

$$
\begin{gathered}
V_{\text {stop }}=1.15 \mathrm{~V} \Rightarrow k_{\text {max }}=1.15 \mathrm{eV} \quad 4.34 \mathrm{eV} \\
k_{\text {max }}=h f-\phi=\frac{h c}{\lambda}-\phi \\
\phi=\frac{h c}{\lambda}-k_{\text {max }}=\frac{\left(4.136 \times 10^{-15} \mathrm{eV} .5\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{226 \times 10^{-9} \mathrm{~m}}-1.15 \mathrm{eV} \\
\phi=4.34 \mathrm{eV}
\end{gathered}
$$

(b) Calculate the maximum wavelength of photons that will cause electrons to be ejected from the metal. (If you did not obtain an answer for (a), use 4.50 eV .) (3 marks)

At threshold, $K_{\max }=0$.

$$
\begin{gathered}
h f_{0}-\phi=\frac{h c}{\lambda_{0}}-\phi=0 \\
\frac{h c}{\lambda_{0}}=\phi \Rightarrow \lambda_{0}=\frac{h c}{\phi} \\
\lambda_{0}=\frac{\left(4.136 \times 10^{-15} \mathrm{ev} .5\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{4.34 \mathrm{eV}}=2.86 \times 10^{-7} \mathrm{~m} \\
=286 \mathrm{~nm}
\end{gathered}
$$

(c) Calculate the maximum speed of the ejected electrons. (4 marks)

$$
\begin{aligned}
& k_{\text {max }}=\frac{1}{2} m v_{\text {max }}^{2} \\
& v_{\text {max }}=\sqrt{\frac{2 k_{\text {max }}}{m}} \\
& v_{\text {max }}=\left(\frac{2(1.15 \mathrm{eV})\left(1.602 \times 10^{-19} \mathrm{eV} / \mathrm{J}\right)}{9.109 \times 10^{-31} \mathrm{~kg}}\right)^{1 / 2} \\
& U_{\text {max }}=6.36 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

B7. A photon is incident on an electron at rest. The scattered photon has a wavelength of 2.81 pm and moves at an angle of 29.5° with respect to the direction of the incident photon.
(a) Calculate the wavelength of the incident photon. (5 marks)

$$
\begin{gathered}
\lambda^{\prime}-\lambda=\frac{h}{m_{e} c}(1-\cos \theta) \\
\lambda^{\prime}-\frac{h}{m_{e} c}(1-\cos \theta)=\lambda \\
2.81 \times 10^{-12} \mathrm{~m}-\frac{\left(6.626 \times 10^{-34} \mathrm{~J} .5\right.}{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)} \\
\left(1-\cos \left(29.5^{\circ}\right)\right)=\lambda \\
\lambda=2.50 \times 10^{-12} \mathrm{~m}
\end{gathered}
$$

(b) Calculate the final kinetic energy of the electron. (5 marks)

$$
\begin{gathered}
E_{\gamma}=E_{\gamma}^{\prime}+K_{e^{-}} \\
K_{e^{-}}=E_{\gamma}-E_{\gamma}^{\prime} \\
K_{e^{-}}=\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}=h c\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right) \\
K_{e^{-}}=\left(6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)\left(3.00 \times 10^{-15} \mathrm{~J} / \mathrm{s}\right) \\
K_{e^{-}}=8.77 \times 10^{-15} \mathrm{~J}
\end{gathered}
$$

