UNIVERSITY OF SASKATCHEWAN

Department of Physics and Engineering Physics

Physics 111.6 General Physics

FINAL EXAMINATION

April 20.	2006				Time	3 hours
NAME:	MASTER			STUDENT NO.:		
	(Last)	Please Print	(Given)		
LECTUR	E SECTION	(please check):				
		•	01	Dr. A. Robinson		
		0	02	B. Zulkoskcy		
			03	Dr. R. Pywell		
			C15	F. Dean		

INSTRUCTIONS:

- 1. You should have a test paper, a formula sheet, and an OMR sheet. The test paper consists of 10 pages. It is the responsibility of the student to check that the test paper is complete.
- 2. Enter your name and STUDENT NUMBER on the OMR sheet.
- 3. The test paper, the formula sheet and the OMR sheet must all be submitted.
- 4. None of the test materials will be returned.
- 5. This is a closed book examination.
- 6. Only Hewlett-Packard HP 30S calculators may be used.

PLEASE DO NOT WRITE ANYTHING ON THIS TABLE

QUESTION NUMBER	MAXIMUM MARKS	MARKS OBTAINED
A1-20	20	
B1-10	20	
Cl	10	
C2	10	
C3	10	546- C 545 H2
TOTAL	70	

travelling North of East at an angle that is greater than 45 degrees, travelling North of East at an angle that is less than 45 degrees.

continued on page 3...

/*

		ics 111.6 Final I 20, 2006; Page			Student No.		
			ne of the following on-zero torque?	conditions will a	a 2 N force and a 4 l	N force produce the	e same
E	3	(C) The 2 N (D) The 2 N	force must have a force must have a force must have a	lever arm that is lever arm that is lever arm that is	half that of the 4 N twice that of the 4 I one-quarter that of 4 times that of the one-eighth that of t	N force. the 4 N force. 4 N force.	bur 🖈
		container of wa submerged in a	ter, and the block of	firon is attached without touching	lumes. The block of to a string and held g the sides or botton	so that it is compl	etely
((D) No state their vol	ment can be made lume. ment can be made	regarding the bu	s the buoyant force ater than the buoyant is than the buoyant fo oyant forces on the oyant forces on the	blocks without kno	owing
		When the sound level (in dB)	f intensity at a parti	cular location in	creases by a factor of	of 100, the sound in	ntensity
6	3	(C) increase (D) does not	reases by a factor of sby 20 dB. In amount dependence of the only of the only street of χ_{00} of χ	endent on the or	riginal intensity.	Compan	ed to the educated agreement that when both the walk
	A10.	Which one of th	ic following statem	ents concerning	the Doppler effect i	s <u>FALSE</u> ?	when some and
E	-	(B) An obse (C) A sound higher fit (D) A sound lower from (E) When by	rver moving away is source moving tow requency. To source moving away equency. To	from a stationary ward a stationary ay from a station the observer mov	arce detects a higher source detects a lo- observer results in the many observer results we away from each o	wer frequency. T the observer detect in the observer de	ting a rest,
	1	suddenly double	ed, the new wave sp	eed is	g in which the tension		
D		(A) $\frac{v}{4}$.	(B) $\frac{v}{2}$.	(C) $\frac{v}{\sqrt{2}}$.		3 H 1 4193	υ = √ <u>π</u> / _L υ′ = √2 υ
D	1	frequency of f. fundamental res	When the cap is rea onant frequency is	moved so that the	on the other end ha e pipe is open at bot	s a fundamental re h ends, the new	sonant M
					(D)) 2 f.		_
C	A13. \	(A) The rms (B) The rms (C) The sver	voltage is less than current is less than	the peak voltage the peak current	alternating current c B. T S zero. F a periodic fashion." t in Canada is 120 V	f= <u>ν</u>	$\frac{\lambda}{4} = \frac{\lambda'}{2}$
		When three ideas	ntical resistors, each	h of R ohms, are	connected in paralle	el, the equivalent r	esistance 2 2
А	($\bigcirc \frac{R}{3}.$	(B) $\frac{R}{9}$.	(C) 3 R.	(D) 9 R = 3.	(E) $\frac{3}{R}$.	,
			$R_{p} = \left(\frac{1}{R} + \frac{1}{R}\right)$	$\left(\frac{1}{R} + \frac{1}{R}\right)^{-1} =$	$\left(\frac{3}{R}\right)^{-1} = \frac{R}{3}$	continued on pag	çe 4

		,6 Final Ex 06; Page 4	kamination		Student N	lo.:	
A15				v enters a region wholestoon which one			
D	(A) (B) (C)	The magnetic force on the electron is parallel to the magnetic field and perpendicular to the electron's trajectory. F The magnetic force on the electron is perpendicular to the magnetic field and parallel to the electron's trajectory. F					
A 1 6	(Ē) S Whioi			ectron by the magn		•	
A	(B) (C) (D) (E)	Farsighte The near The far p The focal	edness can be co point of the eye coint of the eye I length of the e	ements concerning a prrected by using a c e is the minimum di is infinity for a pers eye is changed by ch when viewing dista	tiverging lens, stance at which a on with normal v anging the shape	F un object is still in f vision. T	ocus. T
A17				romatic light travel ence is to occur at po			. If the
С		and the second s					
A18				vith blue light and ei			
D	(A) (B) (C) (D) (E)	are emitte are emitte are emitte	ed at the same n ed at an increase ed at an increase	ate, but with a large ate, but with a smal ed rate, but with a si ed rate, with no char ed rate (but) with a la	er maximum kir naller maximum ige in their maxi	etic energy. kinetic energy. mum kinetic energ	y. 💉
A19	9. Cons	der the foll	lowing nuclear	reaction: and	,.	7-4= 13	
Α			sotope 'X' is	${}_{a}^{16}O + {}_{0}^{\dagger}n \rightarrow X$	4 - a. 2	8-2= 6	
	(A)	¹³ C	(B) ¹⁷ ₆ C	(C) ¹³ ₇ N	(D) 16 N	(E) 17O	
A20.			following state	ements best describe	s the process by	which energy is re	eased in a
D	(A) (B)	used to mi Uranium i	ake steam. ce	y a naturally radioa AS Oxygen in a combu			
	(C)		n and Tritium a	re joined to form He	elium with the re	lease of energy wh	ich is used

Neutrons initiate a nuclear reaction in Uranium which splits into fragments and releases two or three neutrons and energy. The released neutrons can initiate more nuclear reaction.

The energy is collected to make steam.

(E) A Uranium nucleus is energized to an excited state by neutron bombardment, and it then decays emitting beta and gamma rays which heat water to make steam.

PART B

FOR EACH OF THE FOLLOWING PROBLEMS, B1 TO B10, ON PAGES 5, 6 AND 7, WORK OUT THE SOLUTION IN THE SPACE PROVIDED AND ENTER YOUR ANSWERS ON PAGE 7.

ONLY THE ANSWERS WILL BE MARKED. THE SOLUTIONS WILL NOT BE MARKED.

B1. A ball is thrown straight up with an initial velocity of 12.4 m/s. Ignoring any effects due to air resistance, calculate the maximum height of the ball above its release point.

B2. An object of mass 0.255 kg is sliding down a ramp that is inclined at an angle of 30.0° above the horizontal. The acceleration of the block is 0.836 m/s². Calculate the magnitude of the kinetic frictional force acting on the object.

B3. A planet has a radius $R = 5.38 \times 10^6$ m. A satellite is in orbit 1.25×10^7 m above the surface of the planet. The period of the satellite's motion is 4.50×10^4 seconds. Calculate the mass of the planet.

$$F_{grav} = \frac{m u^2}{\Gamma} = m \left(\frac{2\pi r}{T} \right)^2 = \frac{4\pi^2 m r}{T^2}$$

$$R \qquad M_p = \frac{4\pi^2 \Gamma^3}{GT^2}$$

$$M_p = \frac{4\pi^2 \left(5.38 \times 10^{\frac{6}{m}} + 1.25 \times 10^{\frac{7}{m}} \right)^3}{\left(6.67 \times 10^{\frac{11}{m}} \frac{N_1 m^2}{kg^2} \right) \left(4.50 \times 10^{\frac{4}{5}} \right)^2} = \frac{1.67 \times 10^{\frac{24}{m}} kg}{\text{continued on page 6...}}$$

Calculate the angular momentum of a sphere of mass 0.192 kg, radius 0.127 m, spinning with angular velocity of 0.945 rad/s with the axis of rotation through the centre of the sphere.

The diaphragm of a speaker is moving in simple harmonic motion. The frequency of the sound wave that is produced is 2.52 kHz-and its amplitude is 0.202 mm. Calculate the maximum acceleration of the diaphragm(),

> $a = -A\omega^2 \cos(\omega t)$ amax = Auz $a_{\text{max}} = (0.202 \times 10^{-3} \text{m}) (2\pi (2.52 \times 10^{3} \text{Hz}))^{2}$ (amax = 5.06 x 104 m/s2)

Consider two charges, q_1 and q_2 . $q_1 = +3.25 \,\mu\text{C}$. The two charges are separated by a distance of 0.225 m. q_1 experiences an attractive force of 3.40 N due to q_2 . Calculate the magnitude and sign of q_2 .

Two point charges, each of $+1.00 \times 10^{-6}$ C, are located on the x and y axes as shown. Calculate the potential at the origin. point A.

Ж

B8. An object placed at a distance of 30.0 cm from a diverging lens forms an image that is at a distance of magnitude 17.0 cm from the lens. Calculate the focal length of the lens.

B9. In a diffraction grating experiment using a grating with 2500 lines/cm, a second order fringe is located at an angle of 26.0° from the 0th order fringe. Calculate the wavelength of the light.

$$\sin\theta = \frac{m\lambda}{d}$$
 where $d = \frac{1}{N} \Rightarrow \sin\theta = m\lambda N$

$$\lambda = \frac{\sin\theta}{mN} = \frac{\sin(24.0^{\circ})}{2(5000 \text{ km})} = 4.38 \times 10^{-5} \text{ cm} \times \frac{1 \text{ m}}{1000 \text{ cm}} \times \frac{10^{9} \text{ nm}}{m}$$

$$\lambda = \frac{438 \text{ nm}}{\sqrt{1000 \text{ cm}}}$$

B10. Singly-ionized helium (i.e. a helium atom (Z=2) with only one electron in orbit around the nucleus) has been observed in the absorption spectrum from the Sun. Calculate the wavelength of the light absorbed by singly-ionized helium when its electron makes a transition from the n=3 orbit to the n=4 orbit.

$$\frac{1}{\lambda} = RZ^{2} \left(\frac{1}{3^{2}} - \frac{1}{4^{2}} \right)$$

$$\lambda = \left[\left(1.10 \times 10^{7} \text{m}^{-1} \right) \left(2 \right)^{2} \left(\frac{1}{9} - \frac{1}{16} \right) \right]^{-1}$$

$$\lambda = 4.68 \times 10^{-7} \text{m} = 468 \text{ nm}$$

ANSWERS FOR PART B

ENTER THE ANSWERS FOR THE PART B PROBLEMS IN THE BOXES BELOW.
THE ANSWERS MUST CONTAIN THREE SIGNIFICANT FIGURES AND THE UNITS MUST BE GIVEN.
ONLY THE ANSWERS WILL BE MARKED. THE SOLUTIONS WILL NOT BE MARKED.

B1	7.84 m	- 5.89 MC
BŻ	1.04 N	1.42 × 10 ⁵ V
B3	1.67 x 10 ²⁴ kg	- 39.2 cm
B4	$1.17 \times 10^{-3} \text{kg.m/s}$	438 nm
B5	5.06 x 104m/s2	468 nm

PART C

IN EACH OF THE PART C QUESTIONS ON THE FOLLOWING PAGES, GIVE THE COMPLETE SOLUTION AND ENTER THE FINAL ANSWER IN THE BOX PROVIDED. THE ANSWERS MUST CONTAIN THREE SIGNIFICANT FIGURES (FIVE SIGNIFICANT FIGURES FOR CZ) AND THE UNITS MUST BE GIVEN. SHOW YOUR WORK—NO CREDIT WILL BE GIVEN FOR ANSWERS ONLY. EQUATIONS NOT PROVIDED ON THE FORMULAE SHEET MUST BE DERIVED. USE THE BACK OF THE PREVIOUS PAGE FOR YOUR ROUGH WORK.

- C1. A train of mass 6.84 × 10⁶ kg is initially moving with a speed of 80.0 km/h along a straight track. The brakes, which produce a net backward force of 1.93 × 10⁶ N, are then applied for 25.0 seconds.
 - (a) Calculate the magnitude of the change in the momentum of the train during the 25.0 seconds that the brakes are applied.

⋰

(b) Calculate the speed of the train at the end of the 25.0 seconds.

$$U_0 = 80.0 \, \text{km} \times \frac{1 \, \text{h}}{3600 \, \text{s}} \times \frac{1000 \, \text{m}}{\text{km}} = 22.2 \, \text{m/s} = 15.1 \, \text{m/s}$$

$$U = U_0 + \text{at} \quad \text{and} \quad a = \frac{|\Sigma \vec{F}|}{m}$$

$$U = U_0 + \frac{|\Sigma \vec{F}|}{m} t = 22.2 \, \text{m/s} - \frac{1.93 \times 10^6 \, \text{N}}{6.84 \times 10^6 \, \text{kg}} \cdot 25.0 \, \text{s} = 15.1 \, \text{m/s}$$

(c) Calculate the distance traveled by the train during the 25.0 seconds.

$$x = v_s t + \frac{1}{2}at^2$$

$$x = \sqrt{t} + \frac{1}{2} \left(-\frac{|x|^2}{m} \right) t^2$$

$$x = (22.2 \text{ m/s})(25.0 \text{ s}) + \frac{1}{2} \left(-\frac{1.93 \times 10^6 \text{N}}{6.84 \times 10^6 \text{lg}}\right)(25.0 \text{ s})^2 = 467 \text{ m}$$

(d) Calculate the work done by the brake force during the 25.0 seconds. (Remember to include the sign.)

C2. A hot filament is used to produce electrons in an X-ray tube.

(a) The filament is a tungsten wire of circular cross section and has a resistance of 0.0400Ω .

The resistivity of tungsten is $5.60 \times 10^{-8} \Omega$ and the diameter of the wire is 0.200 m.

Calculate the length of the wire filament.

$$R = P_{\overline{A}}^L \Rightarrow L = \frac{RA}{P} ; r = \frac{d}{2}$$
 2.24 cm

$$L = \frac{(0.0400 \text{ n}) (\pi (0.100 \times 10^{-3} \text{ m})^2)}{5.60 \times 10^{-8} \, \Omega \cdot \text{m}} = 2.24 \times 10^{-2} \, \text{m}$$

(b) The filament is connected to a 12.0 V de power supply. Calculate the power dissipated in the filament.

$$\mathcal{E} = \frac{12.0 \text{ V}^2}{R} = \frac{\mathcal{E}^2}{R}$$

$$\rho = \frac{(12.0 \text{ V})^2}{0.0400 \Omega} = 3.60 \times 10^3 \text{ W}$$

(c) The electrons released at the filament are now accelerated using a potential difference of +30.0 kV. Assuming they start from rest, calculate the final speed of the electrons.

(d) The electrons then strike a platinum target. Calculate the minimum wavelength of the X-rays that are produced.

$$\lambda_0 = \frac{hc}{eV}$$

$$\lambda_0 = \frac{(4.14 \times 10^{-15} \text{ eV} \cdot \text{s})(3.00 \times 10^8 \text{m/s})}{e(30.0 \times 10^3 \text{v})} = 4.14 \times 10^{-11} \text{m}$$

Student No.:	there's
--------------	---------

C3. The radioactive isotope of Radon, $^{22}_{30}$ Rn, is a gas which is radioactive and decays by α -particle emission to Polonium, $^{218}_{34}$ Po, with a half life of 3.82 days.

The atomic mass of $^{222}_{86}$ Rn is 222.017571 u The atomic mass of $^{218}_{84}$ Po is 218.008966 u The atomic mass of $^{4}_{2}$ He is 4.002602 u

(a) Calculate the approximate radius of the ²²²/₈₆Rn nucleus.

$$\Gamma \approx R_0 A^{V_3}$$

$$\Gamma \simeq (1.2 \times 10^{-15} \text{m}) (222)^{V_3} = 7.3 \times 10^{-15} \text{m}$$

(b) Calculate the energy released (in MeV) when a ²²²₈₆Rn atom decays.

$$Q = \frac{218}{84} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

$$Q = \frac{100 + 100}{100} - \frac{100}{100} P_0 + \frac{4}{2} He$$

(c) A sample of the Radon gas is collected in a container. The sample is measured to have an activity of 9.62×10^4 Bq (2.60 μ Ci). Calculate the number of $^{222}_{86}$ Rn atoms in the container

$$A = \lambda N, \quad T_{V_2} = \frac{0.693}{\lambda} \qquad \qquad 4.58 \times 10^{10}$$

$$N = \frac{A}{\lambda} = \frac{A T_{V_2}}{0.693} = \frac{(9.62 \times 10^4 \text{ Bg})(3.824 \times \frac{24 \text{ h}}{4} \times \frac{3600 \text{ s}}{\text{h}})}{0.693}$$

$$N = 4.58 \times 10^{10}$$

(d) Calculate how long (in days) it will take before the number of ²²²₈₆Rn atoms in the container is exactly one-tenth the original amount.

$$N = \frac{1}{10}N_{0}$$

$$N = N_{0}e^{-\lambda t} = N_{0}e^{-0.693t}/T_{1/2}$$

$$\frac{N_{0}}{10} = N_{0}e^{-0.693t}/T_{1/2} \Rightarrow t = -\frac{l_{m}(\frac{1}{10})T_{1/2}}{0.693}$$

$$l_{m}(\frac{1}{10}) = -\frac{0.693t}{T_{1/2}}$$

$$t = -\frac{l_{m}(\frac{1}{10})(3.72d)}{0.693}$$

END OF EXAMINATION

$$t = 12.7 d$$