Research Area(s)
- Discovery of novel plant defences and their biosynthetic pathways
- Detoxification of plant defences by plant pathogens
- Chemical synthesis and biological activity of plant metabolites
- Design and synthesis of paldoxins
- Discovery of phytotoxins produced by plant pathogens
Publications
antifungal biosynthesis detoxifying enzymes fungal metabolites paldoxins phytoalexins phytoanticipins secondary metabolism
Selected Publications - 2015-2021
Complete list @ Pedras' Group WEB page
172. Pedras, M. S. C.; Alavi, M.; Abdoli, A. 2021. Phytoalexins and signalling metabolites produced in the wild crucifer Neslia paniculata: Camalexins and arabidopsides. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.14166866.v2
171. Pedras, M. S. C.;* Thapa, C. Hossain, S. 2021. Benzyl and phenyl glucosinolates are metabolized by the specific plant pathogen Alternaria brassicicola but not by the generalist fungal pathogens Rhizoctonia solani or Sclerotinia sclerotiorum. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.13350335.v1
170. Pedras, M. S. C.; Alavi, M. 2020: Expanding the phytoalexin chemical space: Tropalexins A and B from Tropaeolum majus suggest evolutionary conservation of biosynthetic enzymes. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.13350335.v1
169. Pedras, M. S. C.;* Thapa, C. 2020. Unveiling detoxification pathways of the cruciferous phytoalexin rapalexin A: sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp. Phytochemistry, 169, 12188.
168. Pedras, M. S. C.;* Abdoli, A.; To, Q. H.; Thapa, C. 2019. The ecological roles of tryptanthrin, indirubin and N-formylanthranilic acid in Isatis indigotica: phytoalexins or phytoanticipins? Chemistry & Biodiversity, doi: 10.1002/cbdv.201800579.
167. Pedras, M. S. C.;* Abdoli, A. 2018. Methoxycamalexins and related compounds: Syntheses, antifungal activity and inhibition of brassinin oxidase. Bioorganic & Medicinal Chemistry, 26, 4461-4469.
155. Pedras, M. S. C.;* Yaya, E. E. 2015. Plant chemical defenses: Are all constitutive antimicrobial metabolites phytoanticipins? Natural Products Communications, 9, 209-216 (INVITED REVIEW).
154. Pedras, M. S. C.;* To, Q. H. 2015. Non-indolyl cruciferous phytoalexins: Nasturlexins and tridentatols, a striking convergent evolution of defenses in terrestrial plants and marine animals? Phytochemistry, 113, 57–63.
[1] This article is part of the themed collection: Chemical Biology in OBC.
[3] Highlighted in Natural Product Reports, 2016, 33, 742.
Teaching & Supervision
Organic and bioorganic chemistry; natural products chemistry Secondary metabolism
Organic and Bioorganic Chemistry; Natural Products Chemistry; Chemical Ecology
Research
Organic Chemistry and Natural Products biosynthetic pathways detoxifying enzymes paldoxins phytoalexins phytoanticipins phytotoxins secondary metabolism
Details @ Pedras' Group WEB page
In our group we are using bioorganic, biochemical and biological techniques to understand economically important diseases of cruciferous oilseeds (e.g. canola, rapeseed, and mustard), vegetables (e.g. rutabaga, broccoli, cauliflower, and turnip), and condiments (e.g. mustard and wasabi). In particular, the interaction of crucifers with blackleg, blackspot, root rot, stem rot, white rot, and white rust fungi is being investigated. Experimental work combines a wide variety of chemical and biological studies including:
- design and synthesis of paldoxins (inhibitors of phytoalexin detoxifying enzymes);
- isolation and characterization of detoxifying enzymes;
- metabolomics of wild cruciferous species;
- chemical structure determination of metabolites synthesized by plant pathogens (e.g. phytotoxins and elicitors) and plants (e.g. phytoalexins and phytoanticipins)
- determination of biological activities and function of plant and fungal metabolites;
- biosynthesis and metabolism of bioactive metabolites in pathogens and plants;
- chemical synthesis of bioactive compounds and intermediates/products of detoxification pathways
- proteomics of plant fungal pathogens.
Education & Training
B.Sc., LIcentiate, University of Porto, Portugal
Ph.D., University of Alberta, Canada
D.Sc., University of Saskatchewan, Canada
Awards & Honours
- Tier 1 Canada Research Chair, awarded by Canada Research Chairs Program July 2011-June 2018
- Doctor of Science, awarded by University of Saskatchewan June 2011
- Distinguished Researcher, awarded by University of Saskatchewan June 2009
- Tier 1 Canada Research Chair, awarded by Canada Research Chairs Program July 2004-June 2011
- Thorvaldson Professor, awarded by University of Saskatchewan, Department of Chemistry July 2003-June 2008
- Clara Benson Award, awarded by Canadian Society for Chemistry June 2003