Picture of Michael P. Bradley

Michael P. Bradley Ph.D. (MIT), P.Eng.

Professor

Department Head of Physics & Engineering Physics
Faculty Member in Physics & Engineering Physics

Office
Physics 67

Research Area(s)

  • Quantum Magnetometry using Diamond NV-Centres
  • Precision electromagnetic measurements
  • Plasma Immersion Ion Implantation (PIII) for Micro- and Nano- Fabrication
  • Development of silicon photonic light emitters based on buried nano crystalline silicon
  • Plasma processing of photonics materials
  • Fabrication and metrology of integrated semiconductor nanostructures for new applications
  • Graphene doping for device applications
  • Laser systems for neuroscience applications

About me

BIO: Michael Bradley earned an Honours B.Sc. in Applied Physics from the University of New Brunswick and a Ph.D. in Physics from MIT, with a thesis entitled “A sub-ppb measurement of the mass of 133Cs for a new determination of the fine-structure constant”.  Following his Ph.D. he spent three years working in the R&D labs of Axcelis Technologies (formerly the Eaton Semiconductor Equipment Corp.) developing new plasma ion implantation systems for silicon chip processing.  In 2003 he joined the Department of Physics and Engineering Physics at the University of Saskatchewan (U of S), where he set up a CFI & NSERC- funded semiconductor plasma processing research lab.  He also spent two years working at the Bureau International des Poids et Mesures (BIPM) in Sèvres, France where he built the first prototype for a proposed new superconducting Watt Balance. Prof. Bradley is currently Professor in the Department of Physics and Engineering Physics at the U of S, where he runs an active lab in the U of S Plasma Physics Laboratory (U of S PPL). His research interests focus on the development of precision measurement techniques using ion traps, superconductors, and other technologies, as well as the use of plasmas for materials processing applications including nanofabrication. Prof. Bradley was recently awarded a new Canada-UK Joint Quantum Technology grant, one of only 8 awarded across Canada, for development of a compact diamond-NV centre magnetometer.

In the News:

https://research.usask.ca/our-impact/highlights/discoverydigest/2020-november/news-usask-physicist-teams-up-with-u.k.-partners-in-world-first-program-of-quantum-technologies.php

https://theconversation.com/google-claims-to-have-invented-a-quantum-computer-but-ibm-begs-to-differ-127309

https://medium.com/@m.patrick.bradley/the-new-kilogram-quantum-standards-42493e1286f1

Publications

Precision Measurement, Metrology, Silicon, Nanostructures, Photonics, Plasma

[37] Barret J. Taylor and Michael P. Bradley, “Characterization of Hydrogen Ion Implantation Damage in Quartz, Lithium Niobate and Tellurium Dioxide by Raman Spectroscopy”, Rad. Effects & Defects in Solids (online 15 March 2021) https://doi.org/10.1080/10420150.2021.1898390

[36] S.O. Kasap, J. Yang, B. Simonson, E. Adeagbo, M. Walornyj, G. Belev, M.P. Bradley, R.E. Johanson “Effects of x-ray irradiation on charge transport and charge collection efficiency in stabilized a-Se photoconductors”, J. Appl. Phys. 127, 084502 (2020)

[35] B.J. Taylor, A.E. Bourassa, M.P. Bradley , “Charged particle radiation induced changes to optical properties of acousto-optic materials”, Applied Optics 59, 3706-3713 (2020)

[34] H.A. Ejalonibu, M.P. Bradley, G. Sarty “The effect of step-wise surface nitrogen doping in MPECVD grown polycrystalline diamonds”, Materials Science and Engineering: B 258, 114559 (2020)

[33] H. Ejalonibu, G.E. Sarty, and M.P. Bradley,  “Optimal parameters for the synthesis of nitrogen-vacancy centres in polycrystalline diamonds at low pressure”, Journal of Materials Science: Materials in Electronics 30, 10369-10382 (2019). https://doi.org/10.1007/s10854-019-01376-z

[32] M. Alaverdashvili, S. Caine, X. Li, M. J. Hackett, M.P. Bradley, H. Nichol, P.G. Paterson, “Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation”Translational Stroke Research, pp. 1-9 (2018) Publication date: 2018/2/3 DOI: https://doi.org/10.1007/s12975-018-0613-3 

[31] M. Alaverdashvili, P.G. Paterson, M.P. Bradley, “Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model”, Journal of Neuroscience Methods 247, 58-66 (2015) doi:10.106/j.jneumeth.2015.03.029

[30] S.K. Purdy, A.P. Knights, M.P. Bradley and G.S. Chang,  “Light emitting diodes fabricated from carbon ions implanted into p-type silicon”, IEEE Trans. Elect Devices 62, 914-918 (2015). doi:10.1109/TED.2015.2395995

[29] G.R.S. Iyer, J. Wang, G. Wells, M.P. Bradley, F. Borondics,  “Nanoscale imaging of nitrogen-doped single layer graphene” Nanoscale 7, 2289-2294 (2015). doi:10.1039/c4nr05385k

[28] G.R.S. Iyer, J. Wang, G. Wells, G. Srinivasan, S. Payne, M. Bradley, F. Borondics,  “Large Area Free-Standing Single-Layer Graphene Gold: A Hybrid Plasmonic Nanostructure”, ACS Nano 8, 6353-6362 (2014) doi:10.1021/nn501864h

[27] E. de Mirandés, A. Zeggagh, M.P. Bradley, A. Picard and M. Stock, “Superconducting moving coil system to study the behaviour of superconducting coils for a BIPM cryogenic watt balance” Metrologia 51 S123–S131 (2014) doi:10.1088/0026-1394/51/2/S123

[26] D.S. Jessie and M.P. Bradley, “Magnetic Guiding of a Moving Ferromagnetic Sphere”, Progress In Electromagnetics Research M, 32, 245-256 (2013). doi:10.2528/PIERM1307160 

[25] E. de Mirandés, A. Zeggagh, M. Bradley, A. Picard, H. Fang, A. Kiss, S. Solve, R. Chayramy and M. Stock, “Superconducting coil system to study the behavior of superconducting coils for a cryogenic watt balance”, Proc. 2012 Conference on Precision Electromagnetic Measurements (CPEM), 470-471 (2012). doi:10.1109/CPEM.2012.6251007

[24] A. Picard, M.P. Bradley, H. Fang, A. Kiss, E. de Mirandés, B. Parker, S. Solve, and M. Stock, “The BIPM Watt Balance: Improvements and Developments”, IEEE Trans. Instr. Meas. 60, 2378-2386 (2011). 

[23] J.M. Maley, T.K. Sham, A. Hirose, Q. Yang, M.P. Bradley and R. Sammynaiken, “Chemical Reactions and Applications of the Reductive Surface of Porous Silicon”, J. Nanosci. Nanotechnol. 10, 6332-6339 (2010). 

[22] M. Risch and M.P. Bradley, “Prospects for Band Gap Engineering by Plasma Ion Implantation”, physica status solidi(c) 6, S210-S213 (2009). 

[21] M.P. Bradley, P.R. Desautels, D. Hunter, and M. Risch, “Silicon Electroluminescent Device Production via Plasma Ion Implantation”, physica status solidi (c) 6, S206-S209 (2009). 

[20] P.R. Desautels, M.P. Bradley, J.T. Steenkamp, and  J. Mantyka, “Electroluminescence in plasma ion implanted silicon”, phys. stat. sol. (a) 206, 985-988 (2009).

[19] M. Risch and M. Bradley, “Predicted depth profiles for nitrogen-ion implantation into gallium arsenide”, phys. stat. sol. (c) 5, 939-942 (2008). 

[18] C.J.T. Steenkamp and M.P.  Bradley, “Active Charge/Discharge IGBT Modulator for Marx Generator and Plasma Applications”, IEEE Trans. Plasma Sci. 35, 473-478 (2007). 

[17] M.P. Bradley and C.J.T. Steenkamp, “Time-Resolved Ion and Electron Current Measurements in Pulsed Plasma Sheaths”, IEEE Trans. Plasma Sci. 34, 1156-1159 (2006).  

[16] Q. Yang, W. Chen, C. Xiao, A. Hirose, and M. Bradley “Low temperature synthesis of diamond thin films through graphite etching in a microwave hydrogen plasma”, Carbon 43, 2635-2638 (2005).

[15] S. Qin, M.P. Bradley and P.L. Kellerman, “Faraday Dosimetry Characteristics of PIII Doping Processes”, IEEE Trans. Plasma Sci. 31, 369-376 (2003). 

[14] S. Qin, M.P. Bradley, P.L. Kellerman, and K. Saadatmand, “Measurements of secondary electron emission and plasma density enhancement for plasma exposed surfaces using an optically isolated Faraday cup”, Rev. Sci. Inst. 73, 1153-1156 (2002). 

[13] P.L. Kellerman, V. Benveniste, M.P. Bradley, and K. Saadatmand, “Particle trapping and annihilation within the extraction system of ion sources”, Rev. Sci. Inst. 73, 834-836 (2002). 

[12] P.L. Kellerman, S. Qin, M.P. Bradley, and K. Saadatmand, “Ion depletion effects in sheath dynamics during plasma immersion ion implantation- models and data”, Rev. Sci. Inst. 73, 837-839 (2002). 

[11] S. Qin, M.P. Bradley, P.L. Kellerman, and K. Saadatmand, “Measurement and analysis of deposition-etch characteristics of BF3 plasma immersion ion implantation”, Rev. Sci. Inst. 73, 840-842 (2002). 

[10] P.L. Kellerman, M.P. Bradley, and S. Qin, “Active Charge Control in PIII- enlarging the process space”, Surface and Coatings Technology 156, 77-82 (2002). 

[9] J.D. Bernstein, P.L. Kellerman, and M.P. Bradley,  “Effects of Dopant Deposition on p+/n and n+/p Shallow Junctions formed by Plasma Immersion Ion Implantation”, in Proceedings of International Conference on Ion Implantation Technology 2000 pp. 464-467 (2000).  

[8] P.L. Kellerman, J.D. Bernstein, and M.P. Bradley, “Ion Energy Distributions in Plasma Immersion Ion Implantation- Theory and Experiment”, in Proceedings of International Conference on Ion Implantation Technology 2000 pp. 484-487 (2000). 

[7] S. Rainville, M.P. Bradley, J.V. Porto, J.K. Thompson, and D.E. Pritchard, “Precise Measurements of the Masses of Cs, Rb and Na - A New Route to the Fine Structure Constant”, Hyperfine Interactions 132,177-187 (2001). 

[6] M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, and D.E. Pritchard, “Penning Trap Measurements of the Masses of 133Cs, 87,85Rb, and 23Na with Uncertainties <0.2 ppb”, Phys. Rev. Lett. 83, 4510-4513 (1999). 

[5] M. Bradley, F. Palmer, D. Garrison, L. Ilich, S. Rusinkiewicz, and D.E. Pritchard, “Accurate mass spectrometry of trapped ions”, Hyperfine Interactions 108, 227-238 (1997). 

[4] F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, S. Rusinkiewicz, and D.E. Pritchard, “Mass Spectrometry at 0.1 Part Per Billion for Fundamental Metrology”, IEEE Trans. Instr. Meas. 44, 550-552 (1995). 

[3] D.E. Pritchard and M.P. Bradley, “Atom Traps Compared with Ion Traps”, Physica Scripta T59, 131-133 (1995). 

[2] F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, and D.E. Pritchard, “Accurate Atomic Mass Measurements from Penning Trap Mass Comparisons of Individual Ions”, Physica Scripta T59, 144-154 (1995). 

[1] J. Henningsen, M.P. Bradley, “Line-Dependent Saturation in CO2 Lasers”, Applied Physics B-Photophysics and Laser Chemistry 56, 347-353 (1993). 

 

Selection of Publications (by Year)

  • G.R.S. Iyer, J. Wang, G. Wells, M.P. Bradley, F. Borondics. "Nanoscale imaging of freestanding nitrogen doped single layer graphene". Nanoletters In Press
  • GRS Iyer, J Wang, G Wells, S Guruvenket, S Payne, M. Bradley, and F. Borondics. "Large Area Freestanding Single Layer Graphene-Gold: A Hybrid Plasmonic Nanostructure". ACS Nano 8, 6 (2014): 6353-6362.
  • E de Mirandes, A. Zeggagh, M.P. Bradley, A. Picard, M. Stock. "Superconducting moving coil system to study the behaviour of superconducting coils for a BIPM cryogenic watt balance". Metrologia 51 (2014): 123-131.
  • D.S. Jessie, M.P. Bradley. "Magnetic Guiding of a Moving Ferromagnetic Sphere". Progress In Electromagnetics Research M, 32, 245-256 (2013) 32 (2013): 245-256.
  • E. de Mirandes, A. Zeggagh, M. Bradley, A. Picard, H. Fang, A. Kiss, S. Solve, R. Chayramy and M. Stock. "Superconducting coil system to study the behavior of superconducting coils for a cryogenic watt balance". Proc. 2012 Conference on Precision Electromagnetic Measurements (CPEM 2012) 470-471 (2012), CPEM 2012 (2012): 470-471.

Teaching & Supervision

Optics, Photonics

Selection of Courses Taught (by Year)

  • 2019 - EP421: Optical Systems & Materials
  • 2020 - EP370: Heat, Kinetic Theory & Thermodynamics
  • 2021 - ASTR104: Planetary Astronomy

Research

Plasma Physics Precision measurements fundamental physics metrology nano-devices silicon

Quantum Metrology. PIII Systems. Plasma-based fabrication of semiconductor nanostructures for new applications. Precision electromagnetic measurements.

Education & Training

BSc (Honours) University of New Brunswick (Fredericton)

PhD Massachusetts Institute of Technology (Physics-- Course 8)