Skip to main content
Log in

“Swarm relaxation”: Equilibrating a large ensemble of computer simulations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

It is common practice in molecular dynamics and Monte Carlo computer simulations to run multiple, separately-initialized simulations in order to improve the sampling of independent microstates. Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of M independent simulations (a “swarm”), each of which is relaxed to equilibrium. We show that if M is of order \(10^{3}\), we can monitor the swarm’s relaxation to equilibrium, and confirm its attainment, within \(\sim 10\bar{\tau}\), where \(\bar{\tau}\) is the equilibrium relaxation time. As soon as a swarm of this size attains equilibrium, the ensemble of M final microstates from each run is sufficient for the evaluation of most equilibrium properties without further sampling. This approach dramatically reduces the wall-clock time required, compared to a single long simulation, by a factor of several hundred, at the cost of an increase in the total computational effort by a small factor. It is also well suited to modern computing systems having thousands of processors, and is a viable strategy for simulation studies that need to produce high-precision results in a minimum of wall-clock time. We present results obtained by applying this approach to several test cases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algorithms to Applications, 2nd edition (Academic Press, San Diego, 2002)

  2. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  3. L.S.D. Caves, J.D. Evanseck, M. Karplus, Protein Sci. 7, 649 (1998)

    Article  Google Scholar 

  4. A. Elofsson, L. Nilsson, J. Mol. Biol. 233, 766 (1993)

    Article  Google Scholar 

  5. P.V. Coveney, S. Wan, Phys. Chem. Chem. Phys. 18, 30236 (2016)

    Article  Google Scholar 

  6. A.P. Bhati, S. Wan, D.W. Wright, P.V. Coveney, J. Chem. Theory Comput. 13, 210 (2017)

    Article  Google Scholar 

  7. W. Kob, J.-L. Barrat, Phys. Rev. Lett. 78, 4581 (1997)

    Article  ADS  Google Scholar 

  8. E. La Nave, S. Sastry, F. Sciortino, Phys. Rev. E 74, 050501 (2006)

    Article  ADS  Google Scholar 

  9. F.H. Stillinger, A. Rahman, J. Chem. Phys. 60, 1545 (1974)

    Article  ADS  Google Scholar 

  10. O. Steinhauser, Mol. Phys. 45, 335 (1982)

    Article  ADS  Google Scholar 

  11. P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Nature 360, 324 (1992)

    Article  ADS  Google Scholar 

  12. P.H. Poole, I. Saika-Voivod, F. Sciortino, J. Phys.: Condens. Matter 17, L431 (2005)

    ADS  Google Scholar 

  13. P.H. Poole, S.R. Becker, F. Sciortino, F.W. Starr, J. Phys. Chem. B 115, 14176 (2011)

    Article  Google Scholar 

  14. V. Holten, J.C. Palmer, P.H. Poole, P.G. Debenedetti, M.A. Anisimov, J. Chem. Phys. 140, 104502 (2014)

    Article  ADS  Google Scholar 

  15. J.C. Palmer, F. Martelli, Y. Liu, R. Car, A.Z. Panagiotopoulos, P.G. Debenedetti, Nature 510, 385 (2014)

    Article  ADS  Google Scholar 

  16. S.K. Morris, O. Zavalov, R.K. Bowles, I. Saika-Voivod, F. Sciortino, P.H. Poole, unpublished (2017)

  17. A.J. Kovacs, Fortschr. Hochpolym. Forsch. 3, 394 (1963)

    Article  Google Scholar 

  18. S. Mossa, F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004)

    Article  ADS  Google Scholar 

  19. J.L.F. Abascal, C. Vega, J. Chem. Phys. 123, 234505 (2005)

    Article  ADS  Google Scholar 

  20. S.M.A. Malek, P.H. Poole, I. Saika-Voivod, unpublished (2017)

  21. S. Nose, Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  22. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  23. A. Widmer-Cooper, P. Harrowell, J. Chem. Phys. 126, 154503 (2007)

    Article  ADS  Google Scholar 

  24. P.H. Poole, R.K. Bowles, I. Saika-Voivod, F. Sciortino, J. Chem. Phys. 138, 034505 (2013)

    Article  ADS  Google Scholar 

  25. J.C. Dyre, J. Chem. Phys. 143, 114507 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malek, S.M.A., Bowles, R.K., Saika-Voivod, I. et al. “Swarm relaxation”: Equilibrating a large ensemble of computer simulations . Eur. Phys. J. E 40, 98 (2017). https://doi.org/10.1140/epje/i2017-11588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11588-2

Keywords

Navigation