UNIVERSITY OF SASKATCHEWAN
 Department of Physics and Engineering Physics
 Physics 115.3
 MIDTERM EXAM - Alternative Sitting

October 2018
Time: 90 minutes

NAME: \qquad STUDENT NO.: \qquad

LECTURE SECTION (please check):

\square	01	A. Zulkoskey
\square	02	Dr. R. Pywell
\square	03	B. Zulkoskey
\square	97	Dr. A. Farahani
\square	C15	Dr. A. Farahani

INSTRUCTIONS:

1. This is a closed book exam.
2. The test package includes a test paper (this document), an exam booklet, a formula sheet, a scratch card and an OMR sheet. The test paper consists of 8 pages, including this cover page. It is the responsibility of the student to check that the test paper is complete.
3. Only a basic scientific calculator may be used. Graphing or programmable calculators, or calculators with communication capability, or calculators in smart phones are not allowed.
4. Enter your name and student number on the cover of the test paper and check the appropriate box for your lecture section. Also enter your name on the exam booklet and scratch card.
5. Enter your name and NSID on the OMR sheet.
6. The test paper, the exam booklet, the formula sheet, the scratch card, and the OMR sheet must all be submitted.
7. No test materials will be returned.

QUESTION NUMBER	MAXIMUM MARKS	MARKS OBTAINED
A1-12	12	
B1-4	8	
B5-8	8	
B9-12	8	
B13-16	8	
MARK	out of 36:	

PART A

FOR EACH OF THE FOLLOWING QUESTIONS IN PART A, ENTER THE MOST APPROPRIATE RESPONSE ON THE OMR SHEET.

A1. Which one of the following choices correctly represents the quantity Q, where $Q=(4.53 \mathrm{~cm})^{2} \times(6.232 \mathrm{~m} / \mathrm{s})$?
(A) $128 \mathrm{~cm}^{3} / \mathrm{s}$
(B) $1.2789 \times 10^{4} \mathrm{~cm}^{3} / \mathrm{s}$
(C) $1.28 \times 10^{-2} \mathrm{~m}^{2} / \mathrm{s}$
(D) $1.28 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{s}$
(E) $1.279 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{s}$

A2. Given that the dimensions of a, b and c are: $[a]=\frac{[L]}{[T]^{2}} ; \quad[\mathrm{b}]=\frac{[M]^{2}}{[T]} ; \quad[\mathrm{c}]=\frac{[L]^{2}}{[M]^{8}}$, which one of the following expressions is dimensionally correct?
(A) $a=b^{2} c^{1 / 4}$
(B) $a=b^{2} c^{1 / 2}$
(C) $a=b c^{1 / 4}$
(D) $a=1 / 4 b^{2} c$
(E) $a=1 / 2 b c$

A3. A right triangle has sides of length $5.0 \mathrm{~m}, 12 \mathrm{~m}$, and 13 m . The smallest angle of this triangle is
(A) 21°
(B) 23°
(C) 43°
(D) 47°
(E) 67°

A4. As a result of the coordinate system chosen to describe its motion, a car in straight line motion has a negative velocity and a negative acceleration. Which one of the following statements could possibly be correct for the motion of the car?
(A) The car is moving in the negative direction with increasing speed.
(B) The car is moving in the positive direction with increasing speed.
(C) The car is moving in the positive direction with decreasing speed.
(D) The car is moving in the negative direction with decreasing speed.
(E) The car is moving in the negative direction with constant speed.

A5. A ball is thrown from near the ground with an initial velocity that is at an angle of 45° to the horizontal. If we can neglect the effects of air resistance, what happens to the horizontal component of the ball's velocity during its motion?
(A) It decreases slowly, reaching zero just before the ball hits the ground.
(B) It decreases slowly throughout the motion, but is not zero just before the ball hits the ground.
(C) It increases slowly throughout the motion.
(D) It decreases as the ball climbs to the highest point of its motion, then increases as it falls to the ground.
(E) It remains constant throughout the motion.

A6. Four paths are illustrated below for a particle moving in one dimension. In the diagrams the marks along the x-axis are equally spaced. The particle moves back and forth along the x-axis only, the vertical separation of different parts of the motion is for clarity only. The starting and ending points of the motion are indicated by the dots and the initial direction is shown by the arrow. For each motion the time interval between the initial and final positions is the same.

For which of the motions is the magnitude of the average velocity the greatest?
(A) Motion (a).
(B) Motion (b).
(C) Motion (c).
(D) Motion (d).
(E) The average velocity has the same magnitude for all of the motions.

A7. A planet has twice the mass and half the radius of the Earth. Find the acceleration due to gravity near its surface, in terms of g, the acceleration near the Earth's surface.
(A) g
(B) $2 g$
(C) $4 g$
(D) $8 g$
(E) $1 / 2 g$

A8. Three blocks are suspended from the roof by strings as shown. The top block and the bottom block each have mass M, and the middle block has mass $2 M$. The tension in the string between the top block and the roof is T. What is the tension, T_{1}, in the string connecting the bottom block and middle block?
(A) $4 T$
(B) $\frac{3}{2} T$
(C) $\frac{3}{4} T$
(D) $\frac{1}{4} T$
(E) $\frac{1}{3} T$

A9. One way of stating Newton's third law is to say that all forces are action/reaction pairs that are equal in magnitude and opposite in direction. An apple accelerates toward the ground after having fallen from the branch of the apple tree. If the apple's weight is the action force, which statement is correct concerning the reaction force?
(A) The reaction force is the air resistance force on the apple as it falls.
(B) The reaction force is the force of the ground on the apple when it hits the ground.
(C) The reaction force is the force of the apple pulling up on the Earth.
(D) There is no reaction force while it is falling since it is in free-fall.
(E) There is no reaction force while it is falling since the apple is not touching the ground.

A10. A brick of mass M slides down a ramp that has length L and is inclined at an angle θ to the horizontal. If the brick slides down the entire ramp with a constant speed, what is the work done by friction?
(A) 0
(B) $-M g L \cos ^{2} \theta$
(C) $-M g L \cos \theta$
(D) $-M g L \sin \theta$
(E) $-M g L \sin \theta \cos \theta$

A11. If both the mass and speed of a ball are doubled, the kinetic energy is increased by a factor of
(A) 2 .
(B) 4 .
(C) 6 .
(D) 8 .
(E) 16 .

A12. A Hooke's law spring is mounted horizontally over a frictionless surface. The spring is then compressed a distance d from its uncompressed length and is used to launch a mass m from rest along the frictionless surface. What compression distance of the spring is needed for the mass to attain double the speed attained in the previous situation?

(A) $\sqrt{2} d$
(B) $2 d$
(C) $2 \sqrt{2} d$
(D) $4 d$
(E) $8 d$

PART B

Work out the answers to the following Part B questions.

BEFORE SCRATCHING ANY OPTIONS, BE SURE TO DOUBLE-CHECK YOUR LOGIC AND CALCULATIONS.

YOU MAY FIND IT ADVANTAGEOUS TO DO AS MANY OF THE PARTS OF A QUESTION AS YOU CAN BEFORE SCRATCHING ANY OPTIONS.

WHEN YOU HAVE AN ANSWER THAT IS ONE OF THE OPTIONS AND ARE CONFIDENT THAT YOUR METHOD IS CORRECT, SCRATCH THAT OPTION ON THE SCRATCH CARD. IF YOU REVEAL A STAR ON THE SCRATCH CARD THEN YOUR ANSWER IS CORRECT (FULL MARKS, 2/2).

IF YOU DO NOT REVEAL A STAR WITH YOUR FIRST SCRATCH, TRY TO FIND THE ERROR IN YOUR SOLUTION. IF YOU REVEAL A STAR WITH YOUR SECOND SCRATCH, YOU RECEIVE 1.2 MARKS OUT OF 2.

REVEALING THE STAR WITH YOUR THIRD, FOURTH, OR FIFTH SCRATCHES DOES NOT EARN YOU ANY MARKS, BUT IT DOES GIVE YOU THE CORRECT ANSWER.

You may answer all four Part B Question Groupings (1-4, 5-8, 9-12, and 13-16) and you WILL RECEIVE THE MARKS FOR YOUR BEST 3 GROUPINGS.

USE THE PROVIDED EXAM BOOKLET FOR YOUR ROUGH WORK.

Grouping B1-B4

A ball is thrown vertically upward from the roof of a building 44.6 m above the ground with an initial speed of $5.45 \mathrm{~m} / \mathrm{s}$.

B1. Choosing vertically-up to be the positive direction, which one of the following velocity vs time graphs best represents the motion of the ball?

B2. Calculate the speed of the ball as it passes a window 13.7 m below the roof of the building.

B3. Calculate the time from when the ball is initially thrown until it passes the window.

B4. Calculate the total time of flight of the ball, from being thrown vertically upward to reaching the ground.

Grouping B5-B8

Students are having a competition throwing bean bags out of a window of a tall building to hit a target drawn with chalk on the horizontal pavement below. The height of the release point above the pavement is h and the horizontal distance from the building to the target is $d=5.25 \mathrm{~m}$. The winning student throws the bean bag at an angle of $\theta=20.0^{\circ}$ down from the horizontal and it hits the target 1.72 s after the bean bag was released. We can ignore the effect of air resistance in the motion of the bean bag.

B5. If we choose the $+y$ direction to be up, which one of the following graphs best represents the y component of the bean bag's velocity during its flight?

B6. Which one of the following statements is correct for the bean bag during its flight, from after it is released until just before it hits the pavement?
(A) The bean bag's acceleration is always perpendicular to its velocity.
(B) Both its acceleration and the horizontal component of the bean bag's velocity are constant during its flight.
(C) The speed of the bean bag is decreasing during its flight.
(D) The horizontal component of the bean bag's velocity changes during its flight.
(E) The bean bag's velocity is always at the angle θ to the horizontal.

B7. Calculate the speed with which the bean bag is thrown by the winning student.

B8. Calculate the height h of the bean bag's release point.

Grouping B9-B12

A block of mass $m=5.20 \mathrm{~kg}$ is pulled up a $\theta=34.0^{\circ}$ incline as in the figure below with a string with a tension force of magnitude $T=54.0 \mathrm{~N}$. The block starts from rest from the bottom of the incline and is pulled up 2.25 m along the incline in 1.95 s . There is friction between the block and
 the inclined surface.
B9. Which one of the following diagrams best represents the free-body diagram for the block?

B10. Which one of the following expressions is correct for the magnitude of the normal force acting on the block?

B11. Calculate the magnitude of the acceleration of the block.

B12. Calculate the coefficient of kinetic friction between the block and the incline.

Grouping B13-B16

A ball of mass 0.145 kg is thrown vertically upward with an initial speed of $26.0 \mathrm{~m} / \mathrm{s}$. Air resistance is present. The ball returns to the same height from which it was released, and the work done by air resistance on the ball is -7.40 J during the ball's upward flight and -6.80 J during the ball's downward flight.

B13. Which one of the following statements is correct about the work done by the gravitational force on the ball?
(A) The gravitational force does positive work on the ball as the ball is moving upward.
(B) The total work done by the gravitational force on the ball from start to finish of its flight is negative.
(C) The total work done by the gravitational force on the ball from start to finish of its flight is positive.
(D) The total work done by the gravitational force on the ball from start to finish of its flight is zero.
(E) The gravitational force does no work on the ball as the ball is moving downward.

B14. Calculate the change in the ball's kinetic energy between its point of release and its return to the height from which it was released.

B15. Calculate the speed of the ball just as it returns to the height from which it was released.

B16. Calculate the maximum height, above the release point, reached by the ball.

END OF EXAMINATION

