## UNIVERSITY OF SASKATCHEWAN

**Department of Physics and Engineering Physics** 

# Physics 117.3 MIDTERM TEST

| J J    | ,           |                |     |                 |              |  |
|--------|-------------|----------------|-----|-----------------|--------------|--|
| NAME:  |             | SOLUTIO        | NS  |                 | STUDENT NO.: |  |
|        | (Last)      | Please Print   |     | (Given)         |              |  |
| LECTUR | E SECTION ( | please check): |     |                 |              |  |
|        |             |                | 01  | Dr. Y. Yao      |              |  |
|        |             |                | 02  | B. Zulkoskey    |              |  |
|        |             |                | C16 | Dr. A. Farahani |              |  |

## **INSTRUCTIONS:**

February 11, 2016

- 1. This is a closed book exam.
- 2. The test package includes a test paper (this document), a formula sheet, and an OMR sheet. The test paper consists of 8 pages, including this cover page. It is the responsibility of the student to check that the test paper is complete.
- 3. Only a basic scientific calculator (e.g. Texas Instruments TI-30X series, Hewlett-Packard HP 10s or 30S) may be used. Graphing or programmable calculators, or calculators with communication capability, are **not** allowed.
- 4. Enter your name and student number on the cover of the test paper and check the appropriate box for your lecture section. Also enter your student number in the top right-hand corner of each page of the test paper.
- 5. Enter your name and NSID on the OMR sheet.
- 6. The test paper, the formula sheet and the OMR sheet must all be submitted.
- 7. The marked test paper will be returned. The formula sheet and the OMR sheet will <u>NOT</u> be returned.

# ONLY THE <u>THREE</u> PART B QUESTIONS THAT <u>YOU INDICATE</u> WILL BE MARKED PLEASE <u>INDICATE</u> WHICH <u>THREE</u> PART B QUESTIONS ARE TO BE MARKED

| QUESTION<br>NUMBER | TO BE<br>MARKED | MAXIMUM<br>MARKS | MARKS<br>OBTAINED |
|--------------------|-----------------|------------------|-------------------|
| A1-15              | $\square$       | 15               |                   |
| B1                 |                 | 10               |                   |
| B2                 |                 | 10               |                   |
| В3                 |                 | 10               |                   |
| B4                 |                 | 10               |                   |
| TOTAL              |                 | 45               |                   |

Time: 90 minutes

## PART A

D

E

## FOR EACH OF THE FOLLOWING QUESTIONS IN PART A, ENTER THE MOST APPROPRIATE RESPONSE ON THE OMR SHEET.

| A1.      | A tensile force $F$ stretches a wire of original length $L$ by an amount | $\Delta L$ . Consider another wire |
|----------|--------------------------------------------------------------------------|------------------------------------|
| <b>^</b> | of the same composition and cross-sectional area, but of length 2L.      | If a force of $2F$ is applied to   |
| U        | this wire of length $2L$ , then the amount that it stretches is:         | F                                  |

(A)  $\frac{1}{2}\Delta L$ 

(B)  $\Delta L$ 

(C)  $2 \Delta L$ 

Which one of the following is <u>not</u> a unit of pressure?  $\Delta L_2 = \frac{F_2 L_2}{AY} = \frac{2F_1 2L_1}{AY} = \frac{4}{AY} \left(\frac{F_1 L_1}{AY}\right)$ (A) Pascal (Pa)
(B) atmosphere (atm)
(C) cm of mercury (cm Hg)

How deep under the surface of a lake would the pressure be double the pressure at the surface? (1 atm =  $1.01 \times 10^5$  Pa, density of water =  $1.00 \times 10^3$  kg/m<sup>3</sup>)  $P_2 = P_1 + P_2 (y_1 - y_2)$ ;  $P_1 = P_2 + P_3 (y_1 - y_2)$ ;  $P_2 = P_3 + P_4 + P_3 (y_1 - y_2)$   $P_3 = P_4 + P_5 (y_1 - y_2)$   $P_4 = P_5 + P_5 +$ 

submerged just below the surface of the water in a swimming pool, sinks toward the bottom?

As the rock sinks,

B = Pfluid gVfluid and Vfluid = Vobject = Constant once the object is fully-submerged

(A) the buoyant force on the rock increases and the average pressure on the rock increases.

the buoyant force on the rock increases and the average pressure on the rock decreases.

the buoyant force on the rock decreases and the average pressure on the rock decreases.

the buoyant force on the rock decreases and the average pressure on the rock increases.

(E) the buoyant force on the rock remains constant and the average pressure on the rock

Water moves through the pipe shown below in steady, ideal flow.

Which one of the following statements is correct concerning the pressure and flow speed in region 2

concerning the pressure and non-special compared to region 1?  $A_{1}U_{1} = A_{2}U_{2} \quad (Continuity Equation) \Rightarrow U_{2} > U_{1}$   $P_{1} + \frac{1}{2}\rho U_{1}^{2} + \rho g y_{1} = P_{2} + \frac{1}{2}\rho U_{2}^{2} + \rho g y_{2}$   $P_{2} + P_{3}U_{1} = P_{4} + P_{5}U_{2} + P_{5}U_{2}$   $P_{3} + P_{4}U_{5} + P_{5}U_{5} + P_{5}U_{5} + P_{5}U_{5} + P_{5}U_{5}$   $P_{4} + P_{5}U_{5} + P_{5}U_$  $U_2 > U_1$  and  $Y_2 > Y_1 \implies P_2 < P_1$ 

(A) Both the pressure and flow speed are higher in region 2 than in region 1.

Both the pressure and flow speed are lower in region 2 than in region 1.

The pressure is lower in region 2 but the flow speed is higher than in region 1.

The pressure is higher in region 2 but the flow speed is lower than in region 1.

(E) The pressure is lower in region 2 than in region 1 but the flow speed is the same.

A 3.0-cm-diameter pipe is replaced by one of the same length but of 6.0-cm-diameter. If the pressure difference between the ends of the pipe remains the same as for the original pipe, by what factor is the volume flow rate of a viscous liquid through the new pipe greater than the volume flow rate through the original pipe?  $\Rightarrow \rho_{0.15evi}|_{e's}$   $\Rightarrow \rho_{0.15evi}|_{e's}$ Α

connected end-to-end, forming a spring three times the length of one of the original springs, what is the effective spring constant of the combination?

D

(A) 9k (B) 3k (C) k (D) k/3 (E) k/9Let x be the amount that one spring stretches when a force F is applied.

When this same force F is applied to the 3 springs connected end-to-end, each spring stretches the amount x, so  $x_{tot} = 3x$  continued on page 3...  $|F| = |k_{eff}| x_{tot}| = |k_{x}| \Rightarrow k_{eff} = \frac{kx}{x_{tot}} = \frac{kx}{3x} = \frac{1}{3}k$ 

| Physics 117.3 Midterm Test<br>February 11, 2016 |                                                                                               | Stu. No.: Page 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| А8.<br>В                                        | Which one of the follow moves with simple harm                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I mass-spring system that                                                                                                                                                                                                                                                    |  |  |
| ט                                               | (C) The energy of the so (D) The total energy of (E) The speed of the or                      | the system is proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s greatest when the mas<br>s O when $x=0$ (one<br>sformed between kinethal to the square of the saximum value when the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amplitude of the motion. To mass passes through the                                                                                                                                                                                                                          |  |  |
| A9.                                             | Simple pendulum 1, of Lebob of mass $m_2$ . $L_2 = 3L$ periods, $T_1$ and $T_2$ , of the      | ength $L_1$ , has a bob of m<br>$m_1$ and $m_2 = 3m_1$ . Which e pendula is correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ass $m_1$ . Simple penduluone of the following state $\int_{-\infty}^{\infty} 2\pi \int_{-\infty}^{\infty} \frac{1}{2} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |  |  |
|                                                 | (A) $T_2 = \frac{1}{\sqrt{3}}T_1$ (B) $T$                                                     | $T_2 = \frac{1}{3}T_1$ (C) $T_2 = T_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_1$ (D) $T_2 = \sqrt{3} T_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (E) $T_2 = 3 T_1$                                                                                                                                                                                                                                                            |  |  |
| A10.                                            | What is the increase in the sound source emitting a                                           | ne decibel level at a part<br>single frequency is doub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | icular location when the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e power output from a D, E all Correspond to                                                                                                                                                                                                                                 |  |  |
|                                                 | (A) 3.0 dB (B) 1                                                                              | 0.0 dB (C) 20.0 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B (D) 40.0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (E) 200 dB factors<br>10 or more for P2 compa                                                                                                                                                                                                                                |  |  |
| A11.                                            | A wave is travelling with suddenly doubled, what                                              | n a speed of Dalong a st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ring in which the tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n is T If the tension is $I \cap A$                                                                                                                                                                                                                                          |  |  |
|                                                 | (A) $\frac{1}{4}v$ (B) $\frac{1}{2}$                                                          | (C) $\frac{v}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\bigcirc$ $\sqrt{2} v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{2} = \sqrt{\frac{F_2}{\mu}} = \sqrt{\frac{2F_1}{\mu}} = \sqrt{2} \cdot \sqrt{\frac{F_2}{\mu}}$ $= \sqrt{2} \cdot \sqrt{\frac{F_2}{\mu}} = \sqrt{2} \cdot \sqrt{\frac{F_2}{\mu}}$ $= \sqrt{2} \cdot \sqrt{\frac{F_2}{\mu}} = \sqrt{2} \cdot \sqrt{\frac{F_2}{\mu}}$ |  |  |
| A12.                                            | The distance between confloating on the water, you pward displacement is a (A) 0.25 m/s (B) 0 | nsecutive crests of a wa<br>u notice that the interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ter wave is $2.0 \text{ m}$ . As the between times when the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne wave passes a duck<br>ne duck is at maximum                                                                                                                                                                                                                               |  |  |
|                                                 | (A) 0.25 m/s (B) 0                                                                            | .50 m/s 1.0 m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s (D) 2.0 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (E) 4.0 m/s                                                                                                                                                                                                                                                                  |  |  |
| A13.                                            | If you double the tension string  (A) increases by a facto (D) increases by a facto           | in a guitar string, the function in a guitar string, the function $\mathbb{Z}$ is $\mathbb{Z}$ in | $f = \sum_{k=1}^{\infty} f = \frac{\sqrt{k}}{k} = \frac{\sqrt{k}}{k$ | f vibration of the $ \frac{1}{2L} \int_{\mu}^{F_{\mu}};  f_{2} = \frac{1}{2L} \int_{\mu}^{2F_{1}} $ C) doubles. $ f_{2} : \sqrt{2} \cdot \left(\frac{1}{2L} \int_{\mu}^{F_{1}}\right) = \sqrt{2} \cdot f $                                                                   |  |  |
| A14.                                            | Given that the strings of same tension but have di                                            | a guitar are the same ler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ngth, is it possible for th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 (2LJM)                                                                                                                                                                                                                                                                     |  |  |
|                                                 | (A) Yes, and the lower                                                                        | the desired fundamenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                            |  |  |
|                                                 | <u> </u>                                                                                      | the desired fundamenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | frequency, the larger the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he required linear mass                                                                                                                                                                                                                                                      |  |  |
|                                                 | density of the strin (C) No, this is not poss fundamental freque                              | sible because all strings a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at the same tension mus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t have the same                                                                                                                                                                                                                                                              |  |  |
|                                                 | 1                                                                                             | r the desired fundamenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al frequency, the larger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the required linear mass                                                                                                                                                                                                                                                     |  |  |
|                                                 | <u>•</u>                                                                                      | sible because all strings of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of the same length must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | have the same                                                                                                                                                                                                                                                                |  |  |

A15. A truck is being driven at a speed of 130 km/h due East. Two police cars, both moving with a speed of 150 km/h, and both with sirens emitting sound of the same frequency, f, are E approaching the truck. Car 1 is approaching the truck from behind and car 2 is approaching the truck from ahead. Which one of the following statements is correct?

- The driver of the truck hears the same frequency f from each of the police sirens.
- The driver of the truck hears the same frequency  $f_o > f$  from each of the police sirens.
- The driver of the truck hears the same frequency  $f_o < f$  from each of the police sirens.
- (D) The driver of the truck hears a higher frequency from the siren of the police car behind than he does from the siren of the police car ahead.
- (E) The driver of the truck hears a higher frequency from the siren of the police car ahead than

he does from the siren of the police car behind.
$$\oint_{01} = \left(\frac{U - |U_0|}{U - |U_S|}\right) \oint_{S} ; \quad \oint_{02} = \left(\frac{U + |U_0|}{U - |U_S|}\right) \oint_{S} ; \quad \therefore \oint_{02} f = \int_{01}^{\infty} \frac{1}{U - |U_0|} f = \int_{01}^{\infty} \frac{1}{U - |U_0|} f = \int_{02}^{\infty} \frac{1}{U - |U_0|}$$

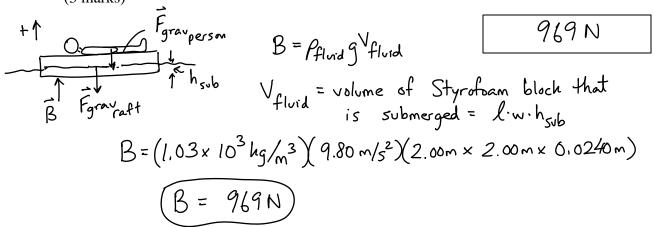
| Physics 117.3 Midterm Test |
|----------------------------|
| February 11, 2016          |

Page 4

#### PART B

Answer  $\underline{\text{THREE}}$  of the Part B questions on the following pages and indicate your choices on the cover page.

FOR EACH OF YOUR CHOSEN PART B QUESTIONS ON THE FOLLOWING PAGES, GIVE THE COMPLETE SOLUTION AND ENTER THE FINAL ANSWER IN THE BOX PROVIDED.


THE ANSWERS MUST CONTAIN THREE SIGNIFICANT FIGURES AND THE UNITS MUST BE GIVEN.

SHOW AND EXPLAIN YOUR WORK - NO CREDIT WILL BE GIVEN FOR ANSWERS ONLY.

EQUATIONS NOT PROVIDED ON THE FORMULAE SHEET MUST BE DERIVED.

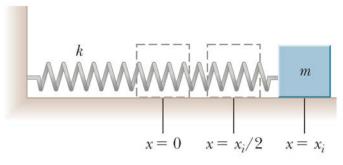
USE THE BACK OF THE PREVIOUS PAGE FOR YOUR ROUGH WORK.

- B1. A 62.0-kg survivor of a cruise ship disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions  $2.00 \text{ m} \times 2.00 \text{ m} \times 0.0900 \text{ m}$ . The bottom 0.0240 m of the Styrofoam block is submerged. Sea water has a density of  $1.03 \times 10^3 \text{ kg/m}^3$ .
  - (a) Calculate the magnitude of the buoyant force exerted by the water on the Styrofoam block. (3 marks)



(b) Calculate the weight of the Styrofoam block. If you did not obtain an answer for (a), use a value of 955 N. (4 marks)

From the force diagram in (a):


$$Z\vec{F} = 0 \Rightarrow B - F_{grav_{raft}} - F_{grav_{person}} = 0$$
 $B - F_{grav_{person}} = F_{grav_{raft}}$ 
 $F_{grav_{raft}} = 969N - M_{person}g = 969N - (62.0 kg)(9.80 m/s^2)$ 
 $F_{grav_{raft}} = 361N$ 

(c) Calculate the density of Styrofoam. If you did not obtain an answer for (b), use a value of 355 N. (3 marks)

$$\rho = \frac{M}{V} = \frac{F_{graw}/g}{V}$$

$$\rho = \frac{361 \,\text{N}/9.80 \,\text{m/s}^2}{(2.00 \,\text{m} \times 2.00 \,\text{m} \times 0.0900 \,\text{m})} = \frac{102 \,\text{kg/m}^3}{V}$$

B2. A horizontal spring attached to a wall has a spring constant of k = 851 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal surface. The block is pulled to a position  $x_i = 6.00$  cm from equilibrium and released.



(a) Calculate the potential energy stored in the spring when the block is 6.00 cm from equilibrium. (3 marks)

$$PE_{s} = \frac{1}{2}kx^{2}$$

$$PE_{s} = \frac{1}{2}(851 \text{ N/m})(0.0600\text{m})^{2}$$

$$PE_{s} = 1.53 \text{ J}$$

1.53J

(b) Calculate the speed of the block as it passes through the equilibrium position. If you did not obtain an answer for (a), use a value of 1.50 J. (3 marks)

Mechanical energy is conserved
$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \text{constant}$$
At max displacement  $(x = A)$ ,  $E = \frac{1}{2}m \cdot (0)^2 + \frac{1}{2}kA^2$ 

$$\therefore \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

At 
$$x = 0$$
 (equilibrium position),  $\frac{1}{2}mv^2 = \frac{1}{2}kA^2$  (= 1.53 J since  $A = 0.0600m$ )
$$V_0 = A\sqrt{\frac{k}{m}} = 0.0600m\sqrt{\frac{851N/m}{1.00 \, \text{kg}}} = (1.75 \, \text{m/s}) \text{ or } V_0 = \sqrt{\frac{2(1.533)}{1.00 \, \text{kg}}} = (1.75 \, \text{m/s})$$

(c) Calculate the speed of the block when it is at a position  $x_i/2 = 3.00$  cm. (4 marks)

$$\frac{1}{2}mv^{2} + \frac{1}{2}kx^{2} = \frac{1}{2}kA^{2}$$

$$mv^{2} = k(A^{2} - x^{2})$$

$$v = \sqrt{\frac{k}{m}} \cdot \sqrt{A^{2} - x^{2}} = \sqrt{\frac{851 \text{ N/m}}{1.00 \text{ kg}}} \cdot \sqrt{(0.0600\text{m})^{2} - (0.0300\text{m})^{2}}$$

$$(v = 1.52 \text{ m/s})$$

- B3. A speaker that emits sound waves uniformly in all directions is placed between two observers who are 36.0 m apart, along the line connecting them. Observer 1 records an intensity level of 82.4 dB and observer 2 records an intensity level of 75.7 dB.
  - (a) Calculate the intensity of the sound detected by each observer. (4 marks)

$$\beta = 10 \log \left( \frac{I}{I_{o}} \right) \qquad \text{Observer 1:} \qquad 1.74 \times 10^{-4} \text{W/m}^{2}$$

$$0 \times 10^{-12} \text{Observer 2:} \qquad 3.72 \times 10^{-5} \text{W/m}^{2}$$

$$10^{10} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}} \implies I = I_{o} \cdot 10^{10}$$

$$I_{o} = \frac{I}{I_{o}$$

(b) Calculate the distance of Observer 1 from the speaker. If you did not obtain answers for (a), use  $I_1 = 1.75 \times 10^{-4} \text{ W/m}^2$  and  $I_2 = 3.50 \times 10^{-5} \text{ W/m}^2$ . (6 marks)

- B4. A steel wire in a piano has a length of 0.700 m and a mass of 4.30 g.
  - (a) Calculate the tension force that must be applied to the string so that the fundamental resonant frequency is 261.6 Hz. (4 marks)

N At fundamental mode of vibration, 
$$L = \frac{1}{2}\lambda_1 \Rightarrow \lambda_1 = 2L$$

$$f_1 = \frac{1}{2}\lambda_1 \Rightarrow \lambda_1 = 2L$$

$$f_1 = \frac{1}{2}\lambda_1 \Rightarrow \int_{M/L} = \frac{1}{2}\int_{M/L} \int_{M/L} f_1 \Rightarrow f_1 \cdot 2L = \int_{M/L} f_2 f_2 f_3 \Rightarrow f_1 \cdot 2L = \int_{M/L} f_3 f_4 \Rightarrow f_4 \cdot 2L = \int_{M/L} f_4 \Rightarrow f_4 \cdot 2L = \int_{M/L} f_4 \Rightarrow f_5 \cdot 2L = \int_{M/L} f_5 \Rightarrow f_6 \cdot 2L = \int_{M/L} f_5 \Rightarrow f_6 \cdot 2L = \int_{M/L} f_6 \Rightarrow f_6 \cdot 2L \Rightarrow f_6 \cdot 2$$

(b) Given that the density of steel is  $7.85 \times 10^3$  kg/m<sup>3</sup>, calculate the cross-sectional area of the wire. (3 marks)

$$\rho = \frac{M}{V} \text{ and } V = AL \implies \rho = \frac{M}{AL}$$

$$A = \frac{M}{\rho L} = \frac{4.30 \times 10^{-3} \text{ hg}}{(7.85 \times 10^{3} \text{ hg})(0.700 \text{ m})} = (7.83 \times 10^{-7} \text{ m}^{2})$$

(c) Given that Young's modulus for steel is  $2.00 \times 10^{11}$  Pa, calculate the amount that the string stretches when the force calculated in (a) is applied to it. If you did not obtain an answer for (a), use a value of 825 N and if you did not obtain an answer for (b), use a value of  $7.80 \times 10^{-7}$  m<sup>2</sup>. (3 marks)

$$\frac{F}{A} = Y \stackrel{\Delta L}{L} \Rightarrow \Delta L = \frac{FL}{AY}$$

$$\Delta L = \frac{(824N)(0.700m)}{(7.83 \times 10^{-7} \text{m}^2)(2.00 \times 10^{11} \text{Pa})} = 3.68 \times 10^{-3} \text{m} = 3.68 \times 10^{-3} \text{m} = 3.68 \times 10^{-3} \text{m}$$

- B1. When a crown of mass 14.5 kg is suspended from an accurate spring scale and fully-submerged in water, the spring scale reads only 129.0 N.
  - (a) Calculate the buoyant force on the crown when it is fully-submerged in water. (3 marks)

$$M_c = 14.5 \text{ kg}$$

At equilibrium,  $\Sigma \vec{F} = 0$ 
 $\therefore +B+F_s-W=0 \Rightarrow B=W-F_s$ 
 $B=M_cg-F_s$ 
 $B=(14.5 \text{ kg})(9.80 \text{ m/s}^2)-129 \text{ N}$ 
 $B=13.1 \text{ N}$ 

(b) Calculate the volume of the crown. If you did not obtain an answer for (a), use a value of 12.5 N. (4 marks)

$$B = P_{flvid} g^{V} flvid$$

$$I.34 \times 10^{-3} \text{ m}^{3}$$
Since the crown is fully-submerged,  $V_{flvid} = V_{crown}$ 

$$V_{crown} = \frac{B}{P_{flvid} g} = \frac{13.1 \text{ N}}{(1.00 \times 10^{3} \text{ kg})} \frac{(9.80 \text{ m/s}^{2})}{(1.00 \times 10^{3} \text{ m}^{3})}$$

$$V_{crown} = 1.34 \times 10^{-3} \text{ m}^{3}$$

(c) Calculate the density of the crown. If you did not obtain an answer for (b), use a value of  $1.30 \times 10^{-3}$  m<sup>3</sup>. (3 marks).

$$\rho = \frac{M}{V} = \frac{14.5 \text{ kg}}{1.34 \times 10^{-3} \text{ m}^3}$$

$$1.08 \times 10^4 \text{ kg/m}^3$$

The position of a 0.300-kg object attached to a spring and undergoing simple harmonic motion (SHM) is described by

$$x = (0.250 \text{ m}) \cos(0.400\pi t)$$

where *t* is in seconds.

Determine the amplitude of the motion. (1 mark)

0.250 m

- .. By inspection, (A = 0.250m)
- (b) Calculate the spring constant. (3 marks)

Recall that 
$$\omega = \sqrt{\frac{k}{m}}$$

0.474 N/m

and from 
$$x = (0.250 \,\mathrm{m}) \cos (0.400 \,\mathrm{m}t)$$
,  $\omega = 0.400 \,\mathrm{m}$  rad/s

: 
$$\omega^2 = \frac{k}{m} \Rightarrow k = m\omega^2 = (0.300 \text{ kg})(0.400 \pi \text{ rad/s})^2$$

Calculate the position of the object at time t = 0.300 s. (3 marks)

$$\chi = (0.250 \,\mathrm{m}) \cos \left[ (0.400 \,\mathrm{\pi} \, \mathrm{rad/s}) (0.300 \,\mathrm{s}) \right]$$
 0.232 m

angle in radians

$$\chi = 0.232 \,\mathrm{m}$$

Calculate the speed of the object at time t = 0.300 s. (3 marks)

$$U = -A\omega \sin(\omega t)$$

0.116 m/s

|v|= (0.250m)(0,400T rad/s) sin (0,400T rad/s)(0.300s)

- B3. A bomb explodes in mid-air and generates a sound wave which radiates uniformly in all directions. At a distance of r = 10.0 m from the blast, the sound wave intensity level is measured to be  $\beta = 135$  dB, relative to the threshold of hearing.
  - (a) Calculate the intensity of the sound wave at a distance of  $1.00 \times 10^2$  m from the explosion. (4 marks)

$$\beta = 10 \log \left(\frac{I}{I_0}\right) \Rightarrow \beta = \log \left(\frac{I}{I_0}\right)$$

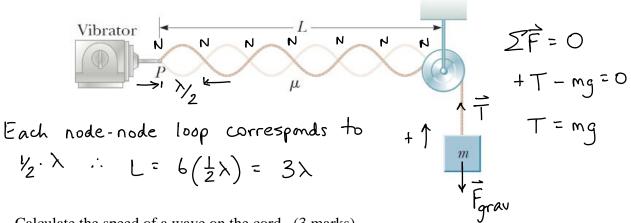
$$10^{\beta/10} = \frac{I}{I_0} \Rightarrow I = I_0 \cdot 10^{\beta/10}$$

0.316 W/m2

.. Intensity corresponding to a level of 135dB is  $I = (1.00 \times 10^{-12} \text{ W/m}^2) 10^{135/10} = 31.6 \text{ W/m}^2$ 

Since the sound wave radiates uniformly in all directions, the wavefronts are spherical shells. With no energy loss,  $P = IA = constant \Rightarrow I_1A_1 = I_2A_2 \Rightarrow I_1 \cdot 4\pi r_1^2 = I_2 \cdot 4\pi r_2^2$ 

$$I_{100} = \frac{(31.6 \text{ W/m}^2)(10.0 \text{ m})^2}{(1.00 \times 10^2 \text{ m})^2} = \frac{(0.316 \text{ W/m}^2)}{(1.00 \times 10^2 \text{ m})^2}$$


(b) Calculate the intensity level at a distance of  $2.00 \times 10^2$  meters from two of these explosions if the bombs explode simultaneously at the same location. (If you did not obtain answer for (a), use a value of  $0.300 \text{ W/m}^2$ .) (6 marks)

As shown above,  $I_1 r_1^2 = I_2 r_2^2$ 

112 dB

Let  $I_1$  be the intensity of one explosion at  $r_1 = 100 \text{ m}$ Let  $I_2$  be the intensity of one explosion at  $r_2 = 200 \text{ m}$  $I_2 = I_1 \left(\frac{r_1}{r_2}\right)^2 = 0.316 \frac{\text{W}}{\text{m}^2} \left(\frac{100 \text{ m}}{200 \text{ m}}\right)^2 = 7.90 \times 10^{-2} \text{ W/m}^2$ 

 $I_{tot} = I_{ntensity}$  due to two explosions at  $r = 200 \text{m} = 2I_z$  $I_{tot} = 0.158 \text{ W/m}^2$ ;  $\beta_{tot} = 10 \log \left( \frac{0.158 \text{ W/m}^2}{1.00 \times 10^{-12} \text{ W/m}^2} \right) = (12 \text{ dB})$  B4. An object of mass m hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L = 2.00 m. The mass of the cord between point P and the pulley is  $m_c = 9.80$  grams. When the vibrator is set to a frequency of 151 Hz, a standing wave with six loops is formed.



(a) Calculate the speed of a wave on the cord. (3 marks)

$$U = f\lambda$$

$$From above, L = 3\lambda \Rightarrow \lambda = \frac{L}{3}$$

$$U = f\lambda$$

$$U = f\lambda$$

$$V = f\lambda$$

$$U = 3\lambda \Rightarrow \lambda = \frac{L}{3}$$

$$U = f\lambda$$

$$U = 3\lambda \Rightarrow \lambda = \frac{L}{3}$$

$$U = f\lambda$$

$$U = 3\lambda \Rightarrow \lambda = \frac{L}{3}$$

$$U = f\lambda$$

$$U = 3\lambda \Rightarrow \lambda = \frac{L}{3}$$

$$U = f\lambda$$

$$U = 3\lambda \Rightarrow \lambda = \frac{L}{3}$$

$$U = f\lambda$$

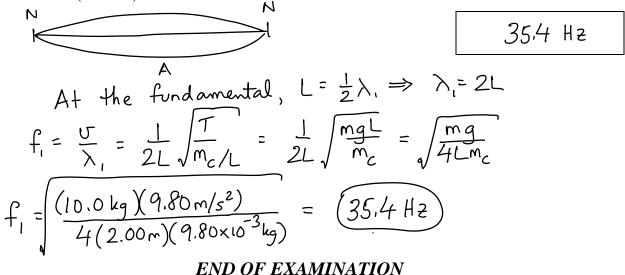
$$U = f\lambda$$

$$U = f\lambda$$

$$U = f\lambda$$

$$U = 3\lambda \Rightarrow \lambda = \frac{L}{3}$$

$$U = f\lambda$$


(b) Calculate *m*, the mass of the object. If you did not obtain an answer for (a), use a value of 105 m/s. (4 marks)

$$U = \sqrt{\mu} \quad \text{where} \quad \mu = \frac{m_c}{L} \text{ and } T = mg \qquad 5.07 \text{ kg}$$

$$U = \sqrt{\frac{m_g L}{m_c}} \Rightarrow \frac{U^2 m_c}{gL} = m = \frac{(101 \text{ m/s})^2 (9.80 \times 10^{-3} \text{ kg})}{(9.80 \text{ m/s}^2)(2.00 \text{ m})}$$

$$m = 5.07 \text{ kg}$$

(c) If m is changed to 10.0 kg, calculate the fundamental frequency of standing waves on the cord. (3 marks)

