SEMINAR NOTICE

Department of Physics and Engineering Physics
University of Saskatchewan

SPEAKER: Carl Dunlea, PhD Candidate
Physics & Engineering Physics

TOPIC: Magnetic Compression at General Fusion- Experiment Simulation

DATE: March 6th, 2018

TIME: 3:30-4:30 p.m.

PLACE: Physics 103

ABSTRACT:

The magnetic compression experiment at General Fusion was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. A plasma-neutral model including ionization, recombination, and charge-exchange reactions, was implemented in order to reduce viscous heating of the ions during formation. We see good agreement between simulated and experimental results.

Coffee and Cookies will be served in Physics lounge at 3:00 p.m. for those attending the seminar.