SEMINAR NOTICE

Department of Physics and Engineering Physics University of Saskatchewan

SPEAKER: Thamirys de Oliveira, PhD Candidate

Department of Physics & Engineering Physics

TOPIC: Heavy-light and Heavy-strange Diquark Mass Splitting from

QCD Sum Rules.

DATE: Tuesday April 4th, 2023

TIME: 3:30-4:30 p.m.

PLACE: Physics 103

Abstract:

QCD Laplace sum rules are an important tool to extract information about bound states of quarks from perturbative QCD with non-perturbative effects of QCD condensates. Applying the QCD Laplace sum rules to heavy-light and heavy-strange diquarks, a bound state of two quarks, we compare their masses. Diquark correlation functions are renormalized using the diagrammatic renormalization method. It is found that the strange quark condensate parameter $k = \alpha \cdot 1$ and $\alpha \cdot 1$ and $\alpha \cdot 1$ and $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ and $\alpha \cdot 1$ are the parameter $\alpha \cdot 1$ a