Course Code and Title:

STAT 812: Computational Statistics

• Students in what programs might be interested in this course?

Statistics, Biostatistics, Mathematics, SPH, Epidemiology, Computer Science, Engineering

Schedule:

TR 10:00 AM - 11:20 AM, McLean Hall 242.1

Tentative List of Topics:

- o Chapter 1: Single-level regression (linear regression, GLM, logistic regression)
- Chapter 2: Optimization and solving nonlinear equations (includes nonlinear regression)
- o Chapter 3: EM optimization method
- o Chapter 4: Simulation and Monte Carlo integration
- Chapter 5: Bayesian inference and MCMC
- Chapter 6: Multilevel regression
- o Chapter 7: An Introduction to Statistical Learning (time permitting).

• Learning Outcomes:

This course will provide a systematic treatment of modern computational statistics. It emphasizes the role of computation as a fundamental tool of discovery in data analysis. On successful completion of the course, you will be a competent R user with skills that adapt readily to other statistical software packages. Students who successfully complete this course will be able to:

- o fit, understand and graph classical regressions and generalized linear models;
- o use regression to learn about quantities of substantive interest;
- o implement optimization techniques for nonlinear equations;
- o implement EM optimization methods for missing data problems;
- simulate random numbers to estimate some functional of a probability distribution (i.e., Monte Carlo experimentation);
- carry out Bayesian inference, and use Hamiltonian Monte Carlo techniques for Bayesian analysis (implements full Bayesian statistical inference using the R package "rstan");
- o understand, graph and fit multilevel models using R and STAN.