University of Saskatchewan Department of Mathematics and Statistics Math Placement Sample Test, June 2008

INSTRUCTIONS:

· Time limit: 70 minutes.

· All questions are of equal value.

· Print your name clearly on the opsan.

· Encode your student ID number on the opscan sheet.

· Encode your answers carefully on the opscan sheet.

· Write your student ID number on the opscan sheet.

1. Simplify: $\frac{\frac{2}{3}+4}{\frac{4}{5}+\frac{5}{6}}$

(a) 2

343 (b)

169

(d)

(f) None of the above.

5. A newspaper employs 24 full-time reporters and 48 part-time reporters. What is the ratio of full-time reporters to the total number of reporters?

(a) 1:2

(b) 3:1

(c) 1:3

(d) 2:1

(e) 2:3

(f) None of the above

6. Find x if $4 = \sqrt{2x - 4}$.

(a) 6

(b) 10

(c) 4

(d) 7

(e) 0

(f) None of the above

7. If |x+3|-3=6, then x=?

(a) 6 or -12

(b) 12

(c) -6 or 12

(d) -6

(e) -12

(f) None of the above

8. If $f(x) = 4x^2 + 5x + 8$, then f(a-1) =

(a) $4a^2 - 3a + 7$

(b) $4a^2 + 13a + 7$

(c) $4a^2 + 5a + 7$

(d) $4a^2 + 5a - 1$

(e) 0

(f) None of the above

2. Each member of a club is assigned into exactly one of two teams: blue team or red team. 35 members belong to the blue team while the red team consists of 30% of the club. How many members of the club are in the red team?

(a) 117

(b) 46

(c) 50

(d) 15 (e) 11

(f) None of the above

3. Solve: $\frac{-11 + (-6)(-6)}{-5} =$

(a) -20

(b) -5

(c) -18

(d) 10 (e) -2

(f) None of the above.

4. Susan scored 77%, 60%, 86%, and 70% on the first four tests. What must she score on the fifth test to obtain an average test score of 69% for the five tests?

(a) 50%

(b) 52%

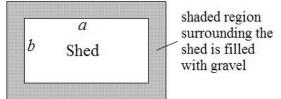
(c) 53%

(d) 56%

(e) 64.75%

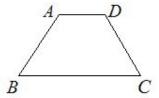
(f) None of the above

- 9. If $f(x) = x^2 + 8x + 3$, then f(-4) =
 - (a) -45
 - (b) -13
 - (c) -37
 - (d) -33
 - (e) -12
 - (f) None of the above
- 10. Find the x-coordinates of the points in the xy-plane where the graph of the function $y = x^2 + 3x 3$ crosses the x-axis.
 - (a) $\frac{3 \pm \sqrt{21}}{2}$
 - (b) $\frac{3 \pm \sqrt{3}}{2}$
 - (c) $\frac{-3 \pm \sqrt{3}}{2}$
 - $(d) \ \frac{-3 \pm \sqrt{21}}{2}$
 - (e) $\frac{-3 \pm \sqrt{37}}{2}$
 - (f) None of the above
- 11. Solve for $x: 16^{3-9x} = 4^{8x}$
 - (a) $\frac{3}{13}$
 - (b) $\frac{3}{25}$
 - (c) $\frac{6}{2!}$
 - (d) $\frac{3}{17}$
 - (e) 0
 - (f) None of the above
- 12. If $\frac{1}{8} \log(x) \log(z) + 4 \log(y) = 0$, solve for z.
 - (a) $\frac{x^{1/8}}{y^4}$
 - (b) $x^{1/8}y^4$
 - (c) $\frac{xy}{2}$
 - (d) $\frac{1}{8}x + 4y$
 - (e) $x^{1/8} + y^4$


- 13. Simplify: $\log_{20} 4 + \log_{20} 5 =$
 - (a) $\log_{20}(-1)$
 - (b) $\log_{20} 9$
 - (c) 2
 - (d) 1
 - (e) 20
 - (f) None of the above
- 14. Solve the inequality $\sqrt{x-4} + \sqrt{x-7} + 6 > 0$.
 - (a) $[7,\infty)$
 - (b) $[4,\infty)$
 - (c) $(-\infty, \infty)$
 - (d) $(7,\infty)$
 - (e) $[-7, \infty)$
 - (f) No solution for x.
- 15. Suppose $P = 8a^2 + 4b^2 8c^2$, $Q = -3a^2 + 5b^2 + 2c^2$, and P Q + R = 0. Determine R.
 - (a) $11a^2 b^2 10c^2$
 - (b) $5a^2 + 9b^2 6c^2$
 - (c) $-11a^2 b^2 + 10c^2$
 - (d) $-11a^2 + b^2 + 10c^2$
 - (e) $-11a^2 + b^2 10c^2$
 - (f) None of the above
- 16. Which of the following five statements is wrong?
 - (a) For $b \ge 0, \sqrt{b^3} = (\sqrt{b})^{\sqrt{3}}$
 - (b) $\sqrt{(-3)^2} = 3$
 - (c) For all $b, \sqrt{b^2} = |b|$
 - (d) $\sqrt[7]{(-3)^7} = -3$
 - (e) For $b \ge 0, \sqrt{b^3} = (\sqrt{b})^3$
- 17. Solve for x:

$$4x + 5y + 17 = 0$$
$$8x + 8y - 7 = 0$$

- (a) $x = \frac{171}{8}$
- (b) $x = -\frac{19}{8}$
- (c) $x = \frac{101}{8}$
- (d) $x = -\frac{101}{8}$
- (e) $x = -\frac{171}{8}$
- (f) None of the above


- 18. The polynomial P(x) divided by $x^2 2x 2$ gives the quotient $x^3 + 4x 2$ and the remainder 4x 3. Determine P(x).
 - (a) $P(x) = x^5 2x^4 + 2x^3 10x^2 + 1$
 - (b) $P(x) = x^5 2x^4 2x^3 10x^2 + 1$
 - (c) $P(x) = x^5 2x^4 + 2x^3 10x^2 + x + 1$
 - (d) $P(x) = x^5 2x^4 + 2x^3 + 10x^2 + 1$
 - (e) $P(x) = x^5 + 2x^4 + 2x^3 10x^2 + 1$
 - (f) None of the above
- 19. Solve for x: $x^2 1 = 2x$.
 - (a) $x = \frac{3}{2} \pm \sqrt{2}$
 - (b) $x = 1 \pm \sqrt{2}$
 - (c) $x = -1 \pm \sqrt{2}$
 - (d) $x = -\frac{1}{2} \pm \frac{\sqrt{2}}{2}$
 - (e) $x = 2 \pm 2\sqrt{2}$
 - (f) None of the above
- 20. Rationalize the denominator: $\frac{1}{2x + \sqrt{1 + 4x^2}}$
 - (a) $\sqrt{1+4x^2}-2x$
 - (b) $-\sqrt{1+4x^2}-2x$
 - (c) $-\sqrt{1+4x^2}+2x$
 - (d) $\sqrt{1+4x^2}+2x$
 - (e) $\frac{\sqrt{1+4x^2}-2x}{2x+1+4x^2}$
 - (f) None of the above
- 21. Simplify: $\frac{x-1}{x^2+3x+2} \frac{4}{x^2-x-2} \frac{x-8}{x^2-4}$.
 - (a) $\frac{2}{(x+2)(x-2)}$
 - (b) $-\frac{2}{(x+1)(x-2)(x+2)}$
 - (c) $\frac{2}{(x+1)(x-2)(x+2)}$
 - (d) 2
 - (e) $\frac{2}{(x-2)(x-1)}$
 - (f) None of the above

22. A landscape architect wants to make an exposed gravel border of uniform width around a small shed. The shed has dimensions a=12 feet by b=11 feet (see figure below). She only has enough gravel to cover 24 square feet. Determine the required uniform border width.

- (a) $\frac{1}{2}$ feet
- (b) $\frac{1}{4}$ feet
- (c) $\frac{3}{2}$ feet
- (d) $\frac{9}{4}$ feet
- (e) 1 foot
- (f) None of the above
- 23. Find the slope of the line that passes through the points (1, 2) and (8, 8).
 - (a) $\frac{6}{13}$
 - (b) $\frac{7}{6}$
 - (c) 5
 - (d) $\frac{6}{7}$
 - (e) $\frac{13}{6}$
 - (f) None of the above

- 24. The base of a right-triangle is 8 m, and the hypotenuse is 10 m. What is the length of the other leg?
 - (a) 18 m
 - (b) 80 m
 - (c) 3 m
 - (d) 6 m
 - (e) 2 m
 - (f) None of the above
- 25. See the trapezoid in the figure below. Given that the line segments AD and BC are parallel, AD=3 cm, $\angle ABC=\angle DCB=30^{\circ}$, and $\frac{AD}{BC}=\frac{1}{3}$, find the area of the trapezoid in cm².

- (a) 6 cm^2
- (b) $6\sqrt{3} \text{ cm}^2$
- (c) 8 cm^2
- (d) $\frac{7}{2}$ cm²
- (e) 7 cm^2
- (f) None of the above
- 26. What is the area of a right-triangle if one leg is 5 m long and the other leg is 9 m long?
 - (a) 14 m^2
 - (b) 7 m^2
 - $(c)~45~\mathrm{m}^2$
 - (d) 22.5 m^2
 - (e) 10 m^2
 - (f) None of the above
- 27. What is the period of the function $y = \tan\left(\frac{x}{4}\right)$?
 - (a) 4π
 - (b) 8π
 - (c) $\frac{\pi}{8}$
 - (d) $\frac{\pi}{4}$
 - (e) π
 - (f) None of the above

- 28. Which of the following statements is false?
 - (a) For all α where $\cos \alpha$ is nonzero, $\sec^2 \alpha \cdot (1 \sin^2 \alpha) = 1$.
 - (b) For all α , $\sin\left(\frac{\pi}{2} + \alpha\right) = -\cos\alpha$.
 - (c) For all α where $\sin \alpha$ is nonzero, $\tan \left(\frac{\pi}{2} + \alpha\right) = -\cot \alpha$.
 - (d) For all α , $\cos(2\alpha) = 2\cos^2\alpha 1$.
 - (e) For all α where $\sin \alpha$ is nonzero, $\tan \left(\frac{\pi}{2} \alpha\right) = \cot \alpha$.
 - (f) None of the above
- 29. In the right triangle $\triangle ABC$, $\angle C = 90^{\circ}$ and $\angle A = 45^{\circ}$. What is the value of $\sin A + \sin B$?
 - (a) $\sqrt{2}$
 - (b) $\frac{1+\sqrt{2}}{2}$
 - (c) $\frac{\sqrt{2}}{2}$
 - (d) 1
 - (e) $\frac{1}{4}$
 - (f) None of the above.
- 30. Find the value of $\sqrt{2}\cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{3}\right)\tan\left(\frac{\pi}{3}\right) + \sqrt{3}\tan\left(\frac{\pi}{6}\right)$
 - (a) $4 \sqrt{2}$
 - (b) $\frac{4-\sqrt{3}}{2}$
 - $(c) \ \frac{3-\sqrt{2}}{2}$
 - $(d) \ \frac{4-\sqrt{2}}{2}$
 - (e) $\frac{4-\sqrt{2}}{3}$
 - (f) None of the above