2022-2023 Term 2 MATH 116

JC Wang

University of Saskatchewan

March 11, 2023
Appendix E Sigma Notation

Definition
A sequence is a set of objects ordered by positive integers. (These objects are usually numbers.) A sequence is said to be finite if it is finite as a set. A sequence is said to be infinite if it is not a finite sequence.

Definition
Given a finite sequence \(a_m, a_{m+1}, \ldots, a_n \) (where \(m \) and \(n \) are positive integers with \(m \leq n \)), we use the following sigma notation for their sum:

\[
\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \cdots + a_n.
\]

Example
\[
\sum_{i=5}^{7} 6 = 6 + 6 + 6, \quad \sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2.
\]
Appendix E Sigma Notation

Definition
A sequence is a set of objects **ordered** by positive integers. (These objects are usually numbers.) A sequence is said to be **finite** if it is finite as a set. A sequence is said to be **infinite** if it is not a finite sequence.

Definition
Given a finite sequence $a_m, a_{m+1}, \cdots, a_n$ (where m and n are positive integers with $m \leq n$), we use the following **sigma notation** for their sum:

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \cdots + a_n.$$

Example
$$\sum_{i=5}^{7} 6 = 6 + 6 + 6, \quad \sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2.$$
Appendix E Sigma Notation

Definition

A sequence is a set of objects **ordered** by positive integers. (These objects are usually numbers.) A sequence is said to be **finite** if it is finite as a set. A sequence is said to be **infinite** if it is not a finite sequence.

Definition

Given a finite sequence \(a_m, a_{m+1}, \ldots, a_n\) (where \(m\) and \(n\) are positive integers with \(m \leq n\)), we use the following **sigma notation** for their sum:

\[
\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \cdots + a_n.
\]

Example

\[
\sum_{i=5}^{7} 6 = 6 + 6 + 6, \quad \sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2.
\]
Rules of Summation

- Let c be a constant that is independent of the index i. Then
 \[\sum_{i=m}^{n} c = c \cdot \text{(the number of terms)} = c(n - m + 1). \]
- \[\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i. \]
- \[\sum_{i=m}^{n} (a_i - b_i) = \sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i. \]
- \[\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i. \]

Theorem

\[\sum_{i=1}^{n} i = n(n + 1)/2. \]

Theorem

\[\sum_{i=1}^{n} i^2 = n(n + 1)(2n + 1)/6. \]

Theorem

\[\sum_{i=1}^{n} i^3 = [n(n + 1)/2]^2. \]

Theorem

\[\sum_{i=1}^{n} x^i = x(1 - x^n)/(1 - x) \text{ for } x \neq 1. \]
Rules of Summation

- Let c be a constant that is independent of the index i. Then
 \[\sum_{i=m}^{n} c = c \cdot (\text{the number of terms}) = c(n - m + 1). \]
- \[\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i. \]
- \[\sum_{i=m}^{n} (a_i - b_i) = \sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i. \]
- \[\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i. \]

Theorem

\[\sum_{i=1}^{n} i = n(n + 1)/2. \]

Theorem

\[\sum_{i=1}^{n} i^2 = n(n + 1)(2n + 1)/6. \]

Theorem

\[\sum_{i=1}^{n} i^3 = [n(n + 1)/2]^2. \]

Theorem

\[\sum_{i=1}^{n} x^i = x(1 - x^n)/(1 - x) \text{ for } x \neq 1. \]
Rules of Summation

- Let c be a constant that is independent of the index i. Then
 $$\sum_{i=m}^{n} c = c \cdot (\text{the number of terms}) = c(n - m + 1).$$
- $$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i.$$
- $$\sum_{i=m}^{n} (a_i - b_i) = \sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i.$$
- $$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i.$$

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{i=1}^{n} i = n(n + 1)/2.$</td>
</tr>
<tr>
<td>Theorem</td>
</tr>
<tr>
<td>$\sum_{i=1}^{n} i^2 = n(n + 1)(2n + 1)/6.$</td>
</tr>
<tr>
<td>Theorem</td>
</tr>
<tr>
<td>$\sum_{i=1}^{n} i^3 = [n(n + 1)/2]^2.$</td>
</tr>
<tr>
<td>Theorem</td>
</tr>
<tr>
<td>$\sum_{i=1}^{n} x^i = x(1 - x^n)/(1 - x)$ for $x \neq 1.$</td>
</tr>
</tbody>
</table>
Rules of Summation

- Let c be a constant that is independent of the index i. Then
 \[\sum_{i=m}^{n} c = c \cdot (\text{the number of terms}) = c(n-m+1). \]
- $\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i.$
- $\sum_{i=m}^{n} (a_i - b_i) = \sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i.$
- $\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i.$

Theorem

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]

Theorem

\[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}. \]

Theorem

\[\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2. \]

Theorem

\[\sum_{i=1}^{n} x^i = x(1 - x^n)/(1 - x) \text{ for } x \neq 1. \]
Rules of Summation

- Let c be a constant that is independent of the index i. Then
 \[\sum_{i=m}^{n} c = c \cdot (\text{the number of terms}) = c(n - m + 1). \]
- \[\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i. \]
- \[\sum_{i=m}^{n} (a_i - b_i) = \sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i. \]
- \[\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i. \]

<table>
<thead>
<tr>
<th>Theorem</th>
<th>(\sum_{i=1}^{n} i = n(n+1)/2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem</td>
<td>(\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6).</td>
</tr>
<tr>
<td>Theorem</td>
<td>(\sum_{i=1}^{n} i^3 = [n(n+1)/2]^2).</td>
</tr>
<tr>
<td>Theorem</td>
<td>(\sum_{i=1}^{n} x^i = x(1 - x^n)/(1 - x) \text{ for } x \neq 1.).</td>
</tr>
</tbody>
</table>
Example

Find the limit

\[\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \left(\left(\frac{i}{n} \right)^2 + 1 \right). \]
5-1 The Area Problem

Example

Find the area under the curve \(y = x^2 \) from \(x = 0 \) to \(x = 1 \).

Definition

Let \(f \) be a **nonnegative**, **continuous** function on an interval \([a, b]\). Let

\[
\Delta x = \frac{b - a}{n}, \quad x_i = a + i\Delta x \quad \text{for} \; i = 0, 1, 2, \cdots, n.
\]

Choose a point \(x_i^* \) from the \(i \)-th closed subinterval \([x_{i-1}, x_i]\). Define the **Riemann sum** and the **area** under the curve \(y = f(x), \; a \leq x \leq b \), by

\[
\sum_{i=1}^{n} f(x_i^*)\Delta x = \begin{cases}
\text{upper sum} & \text{if one chooses} \quad f(x_i^*) = \max_{x_{i-1} \leq x \leq x_i} f(x), \\
\text{lower sum} & \text{if one chooses} \quad f(x_i^*) = \min_{x_{i-1} \leq x \leq x_i} f(x).
\end{cases}
\]

The area = \(\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x \).
5-1 The Area Problem

Example

Find the area under the curve $y = x^2$ from $x = 0$ to $x = 1$.

Definition

Let f be a nonnegative, continuous function on an interval $[a, b]$. Let

$$
\Delta x = \frac{b - a}{n}, \quad x_i = a + i\Delta x \quad \text{for } i = 0, 1, 2, \cdots, n.
$$

Choose a point x_i^* from the i-th closed subinterval $[x_{i-1}, x_i]$. Define the Riemann sum and the area under the curve $y = f(x)$, $a \leq x \leq b$, by

$$
\sum_{i=1}^{n} f(x_i^*) \Delta x = \begin{cases}
\text{upper sum} & \text{if one chooses } f(x_i^*) = \max_{x_{i-1} \leq x \leq x_i} f(x), \\
\text{lower sum} & \text{if one chooses } f(x_i^*) = \min_{x_{i-1} \leq x \leq x_i} f(x).
\end{cases}
$$

The area $= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x$.
5-1 The Distance Problem

Definition

An object moves with \textbf{continuous} velocity $f(t)$, where $a \leq t \leq b$ and $f(t) \geq 0$. Let

$$\Delta t = \frac{b - a}{n}, \quad t_i = a + i\Delta t \quad \text{for } i = 0, 1, 2, \cdots, n.$$

Choose a point t_i^* from the i-th closed subinterval $[t_{i-1}, t_i]$. Define the \textbf{distance} traveled during the time interval $[a, b]$ by

\[
\text{The distance} = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i^*)\Delta t.
\]
5-2 The Definite Integral

Definition

Let \(f \) be a **continuous** function on an interval \([a, b]\). Let

\[
\Delta x = \frac{b - a}{n}, \quad x_i = a + i\Delta x \quad \text{for } i = 0, 1, 2, \ldots, n.
\]

Choose a point \(x_i^* \) from the \(i \)-th closed subinterval \([x_{i-1}, x_i]\). Define the **definite integral** (or simply **integration** or **integral**) of \(f \) over \([a, b]\) by

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x.
\]

- \(f \) not required to be positive; the sample point \(x_i^* \) can be arbitrary, for example, the mid-point \(x_i^* = (x_{i-1} + x_i)/2 \).
- Call \(f(x) \) the **integrand**; \(a, b \) the **limits of integration**.
- Could use any letter in place of \(x \) without changing the value of the integral.
5-2 The Definite Integral

Definition

Let f be a **continuous** function on an interval $[a, b]$. Let

$$\Delta x = \frac{b - a}{n}, \quad x_i = a + i\Delta x \quad \text{for } i = 0, 1, 2, \ldots, n.$$

Choose a point x_i^* from the i-th closed subinterval $[x_{i-1}, x_i]$. Define the **definite integral** (or simply **integration** or **integral**) of f over $[a, b]$ by

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x.$$

- f not required to be positive; the sample point x_i^* can be arbitrary, for example, the mid-point $x_i^* = (x_{i-1} + x_i)/2$.
- Call $f(x)$ the **integrand**; a, b the **limits of integration**.
- Could use any letter in place of x without changing the value of the integral.
5-2 The Definite Integral

Definition

Let \(f \) be a **continuous** function on an interval \([a, b]\). Let

\[
\Delta x = \frac{b - a}{n}, \quad x_i = a + i\Delta x \quad \text{for} \quad i = 0, 1, 2, \ldots, n.
\]

Choose a point \(x_i^* \) from the \(i \)-th closed subinterval \([x_{i-1}, x_i]\). Define the **definite integral** (or simply **integration** or **integral**) of \(f \) over \([a, b]\) by

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x.
\]

- \(f \) not required to be positive; the sample point \(x_i^* \) can be arbitrary, for example, the mid-point \(x_i^* = (x_{i-1} + x_i)/2 \).
- Call \(f(x) \) the **integrand**; \(a, b \) the **limits of integration**.
- Could use any letter in place of \(x \) without changing the value of the integral.
Let \(f \) be a \textbf{continuous} function on an interval \([a, b]\). Let

\[
\Delta x = \frac{b - a}{n}, \quad x_i = a + i \Delta x \quad \text{for } i = 0, 1, 2, \ldots, n.
\]

Choose a point \(x_i^* \) from the \(i \)-th closed subinterval \([x_{i-1}, x_i]\). Define the \textbf{definite integral} (or simply \textbf{integration} or \textbf{integral}) of \(f \) over \([a, b]\) by

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x.
\]

- When \(f \geq 0 \) on \([a, b]\),

\[
\int_a^b f(x) \, dx = \text{area under the curve } y = f(x), \ a \leq x \leq b.
\]
5-2 The Definite Integral

Definition

Let f be a **continuous** function on an interval $[a, b]$. Let

$$\Delta x = \frac{b - a}{n}, \quad x_i = a + i\Delta x \quad \text{for } i = 0, 1, 2, \cdots, n.$$

Choose a point x_i^* from the i-th closed subinterval $[x_{i-1}, x_i]$. Define the **definite integral** (or simply **integration** or **integral**) of f over $[a, b]$ by

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x.$$

- When $f \leq 0$ on $[a, b]$,

$$\int_a^b f(x) \, dx = -\text{area under the curve } y = f(x), \ a \leq x \leq b.$$
5-2 The Definite Integral

Definition

Let \(f \) be a \textbf{continuous} function on an interval \([a, b]\). Let

\[
\Delta x = \frac{b - a}{n}, \quad x_i = a + i\Delta x \quad \text{for } i = 0, 1, 2, \ldots, n.
\]

Choose a point \(x_i^* \) from the \(i \)-th closed subinterval \([x_{i-1}, x_i]\). Define the \textbf{definite integral} (or simply \textbf{integration} or \textbf{integral}) of \(f \) over \([a, b]\) by

\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x.
\]

Example

Express \(\lim_{n \to \infty} \sum_{i=1}^{n} \left(x_i^3 + x_i \sin x_i \right) \Delta x \) as an integral on the interval \([0, \pi]\).
5-2 The Definite Integral

Definition

Let f be a continuous function on an interval $[a, b]$. Let

$$\Delta x = \frac{b - a}{n}, \quad x_i = a + i\Delta x \quad \text{for } i = 0, 1, 2, \ldots, n.$$

Choose a point x_i^* from the i-th closed subinterval $[x_{i-1}, x_i]$. Define the definite integral (or simply integration or integral) of f over $[a, b]$ by

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x.$$

Example

Approximate the definite integral $\int_0^8 \sin \sqrt{x} \, dx$ using Riemann sums in the case of $n = 4$.
5-2 The Definite Integral

- If \(c \) is a constant, then
 \[
 \int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx \quad \text{and} \quad \int_a^b c \, dx = c(b - a)
 \]
- \[
 \int_a^b f(x) + g(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx
 \]
- If \(a < c < b \) then
 \[
 \int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx
 \]
- \[
 \int_a^a f(x) \, dx = 0
 \]
- When \(f \) takes both positive and negative values, then
 \[
 \int_a^b f(x) \, dx = \text{the net area of } f \text{ over } [a, b].
 \]

Example

Find the value of
\[
\int_0^1 (\sqrt{1 - x^2} - 6x) \, dx.
\]
5-2 The Definite Integral

- c constant $\Rightarrow \int_a^b cf(x)\,dx = c \int_a^b f(x)\,dx$ and $\int_a^b c\,dx = c(b-a)$

- $\int_a^b f(x) + g(x)\,dx = \int_a^b f(x)\,dx + \int_a^b g(x)\,dx$

- If $a < c < b$ then $\int_a^b f(x)\,dx = \int_a^c f(x)\,dx + \int_c^b f(x)\,dx$

- $\int_a^a f(x)\,dx = 0$

- When f takes both positive and negative values, then

$$\int_a^b f(x)\,dx = \text{the net area of } f \text{ over } [a, b].$$

Example

Find the value of

$$\int_0^1 (\sqrt{1-x^2} - 6x)\,dx.$$
5-2 The Definite Integral

- c constant $\Rightarrow \int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx$ and $\int_a^b c \, dx = c(b - a)$
- $\int_a^b f(x) + g(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$
- If $a < c < b$ then $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$
- $\int_a^a f(x) \, dx = 0$
- When f takes both positive and negative values, then

\[
\int_a^b f(x) \, dx = \text{the net area of } f \text{ over } [a, b].
\]

Example

Find the value of

\[
\int_0^1 (\sqrt{1 - x^2} - 6x) \, dx.
\]
5-2 The Definite Integral

- c constant $\Rightarrow \int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx$ and $\int_{a}^{b} c \, dx = c(b - a)$
- $\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$
- If $a < c < b$ then $\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$
- $\int_{a}^{a} f(x) \, dx = 0$
- When f takes both positive and negative values, then

$$\int_{a}^{b} f(x) \, dx = \text{the net area of } f \text{ over } [a, b].$$

Example

Find the value of

$$\int_{0}^{1} (\sqrt{1 - x^2} - 6x) \, dx.$$
5-2 The Definite Integral

- c constant $\Rightarrow \int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx$ and $\int_a^b c \, dx = c(b - a)$
- $\int_a^b f(x) + g(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$
- If $a < c < b$ then $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$
- $\int_a^a f(x) \, dx = 0$
- When f takes both positive and negative values, then

$$\int_a^b f(x) \, dx = \text{the net area of } f \text{ over } [a, b].$$

Example

Find the value of

$$\int_0^1 (\sqrt{1 - x^2} - 6x) \, dx.$$
5-2 The Definite Integral

- c constant $\Rightarrow \int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx$ and $\int_a^b c \, dx = c(b - a)$
- $\int_a^b f(x) + g(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$
- If $a < c < b$ then $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$
- $\int_a^a f(x) \, dx = 0$
- When f takes both positive and negative values, then

$$\int_a^b f(x) \, dx = \text{the net area of } f \text{ over } [a, b].$$

Example

Find the value of

$$\int_0^1 (\sqrt{1 - x^2} - 6x) \, dx.$$
5-2 The Definite Integral

- \(f \geq 0 \) on \([a, b]\) \(\Rightarrow \) \(\int_a^b f(x) \, dx \geq 0 \)
- \(f \geq g \) on \([a, b]\) \(\Rightarrow \) \(\int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx \)
- \(m \leq f \leq M \) on \([a, b]\) \(\Rightarrow \) \(m(b - a) \leq \int_a^b f(x) \, dx \leq M(b - a) \)
5-2 The Definite Integral

- $f \geq 0$ on $[a, b] \Rightarrow \int_a^b f(x) \, dx \geq 0$
- $f \geq g$ on $[a, b] \Rightarrow \int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx$
- $m \leq f \leq M$ on $[a, b] \Rightarrow m(b - a) \leq \int_a^b f(x) \, dx \leq M(b - a)$
5-2 The Definite Integral

- $f \geq 0$ on $[a, b] \Rightarrow \int_a^b f(x) \, dx \geq 0$
- $f \geq g$ on $[a, b] \Rightarrow \int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx$
- $m \leq f \leq M$ on $[a, b] \Rightarrow m(b - a) \leq \int_a^b f(x) \, dx \leq M(b - a)$
The Fundamental Theorem of Calculus (FTC)

Theorem

Assume that f is continuous on $[a, b]$.

1. The function

$$g(x) = \int_a^x f(t) \, dt, \quad a \leq x \leq b,$$

is continuous on $[a, b]$ and differentiable on (a, b), and

$$g'(x) = f(x), \quad a < x < b.$$

2. The value of the integral

$$\int_a^b f(x) \, dx = F(b) - F(a),$$

where F is any anti-derivative of f, that is, a function F such that $F' = f$.

The Fundamental Theorem of Calculus (FTC)

Theorem

Assume that f is continuous on $[a, b]$.

1. The function

$$g(x) = \int_{a}^{x} f(t) \, dt, \quad a \leq x \leq b,$$

is continuous on $[a, b]$ and differentiable on (a, b), and

$$g'(x) = f(x), \quad a < x < b.$$

2. The value of the integral

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a),$$

where F is any anti-derivative of f, that is, a function F such that $F' = f$.

Examples

Example
Find the derivative of
\[\int_0^x \sqrt{1 + t^2} \, dt. \]

Example
Find the derivative of
\[\int_0^{x^4} \sec t \, dt. \]

Example
Evaluate
\[\int_3^6 \frac{1}{x} \, dx. \]
Examples

Example
What’s wrong with the calculation?

\[
\int_{-1}^{3} \frac{1}{x^2} \, dx = -\frac{1}{x} \bigg|_{x=-1}^{x=3} = -\frac{1}{3} - 1 < 0.
\]

Example
Find the limit

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \left[\left(\frac{i}{n} \right)^2 + 1 \right].
\]

Example
Find the limit

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \left[\left(\frac{2i}{n} \right)^3 + 5 \left(\frac{2i}{n} \right) \right].
\]
The notation \(F(x) = \int f(x) \, dx \) means \(F'(x) = f(x) \).

Example

\[
\int x^2 \, dx = \frac{x^3}{3} + \text{constant}
\]

\[
\int \sin x \, dx = -\cos x + \text{constant}
\]
5-4 The Indefinite Integral

Definition

The notation

\[F(x) = \int f(x) \, dx \]

means

\[F'(x) = f(x). \]

Example

\[\int x^2 \, dx = \frac{x^3}{3} + \text{constant} \]

\[\int \sin x \, dx = -\cos x + \text{constant} \]
5-4 The Indefinite Integral

Examples
(The Table of Indefinite Integrals Part I)

\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + \text{constant} \quad (n \neq -1) \]

\[\int \frac{1}{x} \, dx = \ln |x| + \text{constant} \]

\[\int e^x \, dx = e^x + \text{constant}, \quad \int b^x \, dx = \frac{b^x}{\ln b} + \text{constant} \]
5-4 The Indefinite Integral

Examples

(The Table of Indefinite Integrals Part II)

\[
\int \sin x \, dx = -\cos x + \text{constant}, \quad \int \cos x \, dx = \sin x + \text{constant}
\]

\[
\int \sec^2 x \, dx = \tan x + \text{constant}, \quad \int \csc^2 x \, dx = -\cot x + \text{constant}
\]

\[
\int \sec x \tan x \, dx = \sec x + \text{constant}, \quad \int \csc x \cot x \, dx = -\csc x + \text{constant}
\]

\[
\int \frac{1}{1 + x^2} \, dx = \tan^{-1} x + \text{constant}, \quad \int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x + \text{constant}
\]
Example

Define

\[
\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}.
\]

Then we have

\[
\int \sinh x \, dx = \cosh x + \text{constant}, \quad \int \cosh x \, dx = \sinh x + \text{constant}.
\]

Example

Compute

\[
\int \frac{\cos \theta}{\sin^2 \theta} \, d\theta.
\]

Example

Evaluate

\[
\int_0^2 \left(2x^3 - 6x + \frac{3}{1 + x^2}\right) \, dx.
\]
Example

Define
\[\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}. \]

Then we have
\[\int \sinh x \, dx = \cosh x + \text{constant}, \quad \int \cosh x \, dx = \sinh x + \text{constant}. \]

Example

Compute
\[\int \frac{\cos \theta}{\sin^2 \theta} \, d\theta. \]

Example

Evaluate
\[\int_0^2 2x^3 - 6x + \frac{3}{1 + x^2} \, dx. \]
5-4 The Indefinite Integral

Example

Define

\[
\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}.
\]

Then we have

\[
\int \sinh x \, dx = \cosh x + \text{constant}, \quad \int \cosh x \, dx = \sinh x + \text{constant}.
\]

Example

Compute

\[
\int \frac{\cos \theta}{\sin^2 \theta} \, d\theta.
\]

Example

Evaluate

\[
\int_0^2 2x^3 - 6x + \frac{3}{1 + x^2} \, dx.
\]
Example

Evaluate

\[\int_{1}^{9} \frac{2t^2 + t^2 \sqrt{t} - 1}{t^2} \, dt. \]
(Net Change Theorem) If \(F \) is differentiable on some open interval that contains \([a, b]\), then

\[
\int_a^b F'(x) \, dx = F(b) - F(a).
\]

This is a reformulation of the FTC.

An object moves alone the real line with position \(s(t) \), then its velocity is \(v(t) = s'(t) \), so

displacement during the time period \([t_1, t_2]\) = \(\int_{t_1}^{t_2} v(t) \, dt = s(t_2) - s(t_1) \);

distance traveled during the time period \([t_1, t_2]\) = \(\int_{t_1}^{t_2} |v(t)| \, dt \).
5-4 The Indefinite Integral: Applications

Theorem

(Net Change Theorem) If F is differentiable on some open interval that contains $[a, b]$, then

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a).$$

This is a reformulation of the FTC.

Example

An object moves alone the real line with position $s(t)$, then its velocity is $v(t) = s'(t)$, so

displacement during the time period $[t_1, t_2] = \int_{t_1}^{t_2} v(t) \, dt = s(t_2) - s(t_1)$;

distance traveled during the time period $[t_1, t_2] = \int_{t_1}^{t_2} |v(t)| \, dt$.
Example

A particle moves on the real line with \(v(t) = t^2 - t - 6 \).

1. Find the displacement of the particle during the time period \(1 \leq t \leq 4 \).
2. Find the distance traveled during this time period.
5-5 The Substitution Rule

Example

\[\int 2x \sqrt{1 + x^2} \, dx \]

Fact

(The Substitution Rule) If \(u = g(x) \) is differentiable and its range is an interval \(I \) on which \(f \) is continuous, then

\[\int f(g(x))g'(x) \, dx = \int f(u) \, du. \]

Example

\[\int x^3 \cos(x^4 + 2) \, dx \]

Example

\[\int \sqrt{2x + 1} \, dx \]
5-5 The Substitution Rule

Example
\[\int 2x \sqrt{1 + x^2} \, dx \]

Fact
(The Substitution Rule) If \(u = g(x) \) is differentiable and its range is an interval \(I \) on which \(f \) is continuous, then

\[\int f(g(x))g'(x) \, dx = \int f(u) \, du. \]

Example
\[\int x^3 \cos(x^4 + 2) \, dx \]

Example
\[\int \sqrt{2x + 1} \, dx \]
5-5 The Substitution Rule

Example

\[\int \frac{x}{\sqrt{1-4x^2}} \, dx \]

Example

\[\int e^{5x} \, dx \]

Example

\[\int x^5 \sqrt{x^2+1} \, dx; \quad u = x^2 + 1 \]

Example

\[\int \tan x \, dx \]

Example

\[\int_1^2 \frac{1}{(3-5x)^2} \, dx \]
5-5 The Substitution Rule

Example
\[\int_1^e \frac{\ln x}{x} \, dx \]

Fact
(Symmetry) Suppose \(f \) is continuous on \([-a, a]\).

1. If \(f(-x) = f(x) \) for all \(x \), then \(\int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx \).
2. If \(f(-x) = -f(x) \) for all \(x \), then \(\int_{-a}^a f(x) \, dx = 0 \).

Example
\[\int_{-2}^2 x^6 + 1 \, dx \]

Example
\[\int_{-1}^1 \frac{\tan x}{1+x^2+x^4} \, dx = 0. \]
5-5 The Substitution Rule

Example
\[\int_1^e \frac{\ln x}{x} \, dx \]

Fact

(Symmetry) Suppose \(f \) is continuous on \([-a, a]\).

1. If \(f(-x) = f(x) \) for all \(x \), then \(\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \).
2. If \(f(-x) = -f(x) \) for all \(x \), then \(\int_{-a}^{a} f(x) \, dx = 0 \).

Example
\[\int_{-2}^{2} x^6 + 1 \, dx \]

Example
\[\int_{-1}^{1} \frac{\tan x}{1 + x^2 + x^4} \, dx = 0. \]
6-1 The Area Between Curves

Fact

The area bounded by the continuous curves \(y = f(x), \ y = g(x), \) and the lines \(x = a, \ x = b \) is given by

\[
\text{area} = \int_a^b |f(x) - g(x)| \, dx.
\]

Example

Find the area of the region bounded by \(y = e^x, \ y = x, \ x = 0, \ x = 1. \)

Example

Find the area enclosed by parabolas \(y = x^2 \) and \(y = 2x - x^2. \)

Example

Find the area bounded by \(y = \sin x, \ y = \cos x, \ x = 0, \ x = \pi/2. \)
6-1 The Area Between Curves

Fact

The area bounded by the continuous curves \(y = f(x) \), \(y = g(x) \), and the lines \(x = a \), \(x = b \) is given by

\[
\text{area} = \int_a^b |f(x) - g(x)| \, dx.
\]

Example

Find the area of the region bounded by \(y = e^x \), \(y = x \), \(x = 0 \), \(x = 1 \).

Example

Find the area enclosed by parabolas \(y = x^2 \) and \(y = 2x - x^2 \).

Example

Find the area bounded by \(y = \sin x \), \(y = \cos x \), \(x = 0 \), \(x = \pi/2 \).
6-1 The Area Between Curves

Fact

The area bounded by the continuous curves \(y = f(x), \ y = g(x), \) and the lines \(x = a, \ x = b \) is given by

\[
\text{area} = \int_{a}^{b} |f(x) - g(x)| \, dx.
\]

Example

Find the area of the region bounded by \(y = e^x, \ y = x, \ x = 0, \ x = 1. \)

Example

Find the area enclosed by parabolas \(y = x^2 \) and \(y = 2x - x^2. \)

Example

Find the area bounded by \(y = \sin x, \ y = \cos x, \ x = 0, \ x = \pi/2. \)
Some regions are best treated by regarding x as a function in y. The area bounded by the continuous curves $x = f(y)$, $x = g(y)$, and the lines $y = c$, $y = d$ is given by

$$\text{area} = \int_{c}^{d} |f(y) - g(y)| \, dy.$$
Let S be a solid that lies between $x = a$ and $x = b$. If the cross-sectional area of S through x and perpendicular to the x-axis is a continuous function $A(x)$, then

$$\text{volume of } S = \int_a^b A(x) \, dx.$$

Example

Find the volume of a ball with radius r.

$$A(x) = \pi y^2 = \pi (r^2 - x^2), \quad -r \leq x \leq r.$$
6-2 Volumes

Fact

Let S be a solid that lies between $x = a$ and $x = b$. If the cross-sectional area of S through x and perpendicular to the x-axis is a continuous function $A(x)$, then

$$\text{volume of } S = \int_a^b A(x) \, dx.$$

Example

Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

$$A(x) = \pi (\sqrt{x})^2, \quad 0 \leq x \leq 1.$$
Fact

Let S be a solid that lies between $y = c$ and $y = d$. If the cross-sectional area of S through y and perpendicular to the y-axis is a continuous function $A(y)$, then

$$\text{volume of } S = \int_{c}^{d} A(y) \, dy.$$

Example

Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, $y = 8$, and $x = 0$ about y-axis.

$$A(y) = \pi x^2 = \pi (\sqrt[3]{y})^2, \quad 0 \leq y \leq 8.$$
Example

The region R enclosed by $y = x$ and $y = x^2$ is rotated about the x-axis. Find the volume of the resulting solid.

$$A(x) = \pi x^2 - \pi (x^2)^2, \quad 0 \leq x \leq 1.$$

Example

Rotate the same region R about the horizontal line $y = 2$ and find the volume of the solid of revolution whose cross-section is a washer with the inner radius $2 - x$ and the outer radius $2 - x^2$.

Example

The region R enclosed by $y = x$ and $y = x^2$ is rotated about the x-axis. Find the volume of the resulting solid.

$$A(x) = \pi x^2 - \pi (x^2)^2, \quad 0 \leq x \leq 1.$$

Example

Rotate the same region R about the horizontal line $y = 2$ and find the volume of the solid of revolution whose cross-section is a washer with the inner radius $2 - x$ and the outer radius $2 - x^2$.

The same region R enclosed by $y = x$ and $y = x^2$ is now rotated about the vertical line $x = -1$. Find the volume of the solid of revolution whose cross-section is now a washer with the inner radius $1 + y$ and the outer radius $1 + \sqrt{y}$.
Example

A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder, while the other intersects the first at an angle of 30° along a diameter of the cylinder. Find the volume of the wedge.

Hint: Place the x-axis along the diameter where the planes meet, then the base of the solid is a semicircle $y = \sqrt{16 - x^2}$, $-4 \leq x \leq 4$. Then the cross-section perpendicular to the x-axis at x is a triangle whose base is $y = \sqrt{16 - x^2}$ and the height $y \tan 30^\circ$. Thus,

$$A(x) = \frac{16 - x^2}{2\sqrt{3}}, \quad -4 \leq x \leq 4.$$
6-3 Volumes by Cylindrical Shells

Fact

Let S be the solid obtained by rotating about the y-axis the region bounded by $y = f(x)$ where $f(x) \geq 0$, $y = 0$, $x = a$, $x = b$, where $b > a \geq 0$. Then

$$\text{volume of } S = \int_{a}^{b} 2\pi x f(x) \, dx.$$

Example

Find the volume of S where the region is bounded by $y = f(x) = 2x^2 - x^3$ and $y = 0$.

$$\text{volume of } S = \int_{a}^{b} 2\pi x f(x) \, dx.$$
6-3 Volumes by Cylindrical Shells

Fact

Let S be the solid obtained by rotating about the y-axis the region bounded by $y = f(x)$ where $f(x) \geq 0$, $y = 0$, $x = a$, $x = b$, where $b > a \geq 0$. Then

$$\text{volume of } S = \int_{a}^{b} 2\pi xf(x) \, dx.$$

Example

Find the volume of S where the region is bounded by $y = f(x) = 2x^2 - x^3$ and $y = 0$.

$$\text{volume of } S = \int_{a}^{b} 2\pi x \left(f(x) \right) \, dx.$$

\[\text{circumference} \quad \text{height} \quad \text{thickness} \]
6-3 Volumes by Cylindrical Shells

Fact

Let S be the solid obtained by rotating about the y-axis the region bounded by $y = f(x)$ where $f(x) \geq 0$, $y = 0$, $x = a$, $x = b$, where $b > a \geq 0$. Then

$$\text{volume of } S = \int_a^b 2\pi xf(x) \, dx.$$

Example

Find the volume of the solid obtained by rotating about the y-axis the region between $y = x$ and $y = x^2$.

height $f(x) = x - x^2$
Fact

Let S be the solid obtained by rotating about the x-axis the region bounded by $x = g(y)$ where $g(y) \geq 0$, $x = 0$, $y = c$, $y = d$, where $d > c \geq 0$. Then

$$\text{volume of } S = \int_c^d 2\pi y g(y) \, dy.$$

Example

Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

radius = y, circumference = $2\pi y$, height = $1 - y^2$

volume = $\int_0^1 (2\pi y)(1 - y^2) \, dy$ (The cross-section method seems better.)
Example

Find the volume of the solid obtained by rotating the region under the curve $y = x - x^2$ and $y = 0$ about **the line** $x = 2$.

radius = $2 - x$, circumference = $2\pi(2 - x)$, height = $x - x^2$

$$\text{volume} = \int_{0}^{1} 2\pi(2 - x)(x - x^2) \, dx$$
6-4 Work

Definition
An object moves along the x-axis in the positive direction. At each point x a force $f(x)$ acts continuously at the object. The work done in moving the object from $x = a$ to $x = b$ is

$$\text{work} = \int_{a}^{b} f(x) \, dx.$$

Example
A force of 40 (newton) is needed to hold a spring that has been stretched from its natural length of 10 (cm) to a length of 15. How much work is done in stretching the spring from 15 to 18?

$$f(x) = kx \quad \text{Hooke's Law}$$
6-4 Work

Definition
An object moves along the x-axis in the positive direction. At each point x a force $f(x)$ acts continuously at the object. The work done in moving the object from $x = a$ to $x = b$ is

$$\text{work} = \int_{a}^{b} f(x) \, dx.$$

Example
A force of 40 (newton) is needed to hold a spring that has been stretched from its natural length of 10 (cm) to a length of 15. How much work is done in stretching the spring from 15 to 18?

$$f(x) = kx \quad \text{Hooke’s Law}$$
6-4 Work

Example

A 200 (lb) cable is 100 (ft) long and hangs vertically from the top of a building. Set the top of the building to be the origin and the x-axis pointing downward. Partition the cable into n small pieces of uniform length Δx, and let x_i^* denote a point in the ith such small piece. Assume the cable is made of uniform density so that it weighs 2 per foot (lb/ft), so the weight of the ith part is $2\Delta x$ (lb).

\[
\text{work done on the } i\text{th part} = \left(2\Delta x \right) \cdot \left(x_i^* \right)
\]

force against gravity \hspace{1cm} distance

Overall, the work is needed to lift the cable to the top of the building is given by

\[
\lim_{n \to \infty} \sum_{i=1}^{n} 2x_i^* \Delta x = \int_{0}^{100} 2x \, dx.
\]
6-4 Work

Example

A water tank has the shape of an inverted circular cone with height 10 (m) and base radius 4 (m). It is filled with water to a height of 8 (m). Find the work required to empty tank by pumping all of the water to the top of the tank. (The density of water is 1000.)

Hint: Measure depth from the top of the tank by placing $x = 0$ at there, and partition the (vertical) interval $[2, 10]$ into n subintervals and choose x_i^* from the i-th one, so that the water is divided into n layers. Then the i-th layer is approximated by a circular cylinder with radius r_i and height $\Delta x = 8/n$, where

$$\frac{r_i}{10 - x_i^*} = \frac{4}{10}.$$

Note that the density of water is 1000 (kg/m3), the gravitational constant $g = 9.8$, and mass = density \times volume.
6-5 Average Value of a Function

Definition
The average value of a function \(f \) on \([a, b]\) is

\[
\frac{1}{b-a} \int_{a}^{b} f(x) \, dx.
\]

Theorem
(Mean Value Theorem) If \(f \) is continuous on \([a, b]\), then there exists a number \(c \) in \([a, b]\) such that

\[
f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.
\]

Example
Find such a \(c \) for \(f(x) = 1 + x^2 \) on \([-1, 2]\).
6-5 Average Value of a Function

Definition

The average value of a function f on $[a, b]$ is

$$\frac{1}{b-a} \int_a^b f(x) \, dx.$$

Theorem

(Mean Value Theorem) If f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Example

Find such a c for $f(x) = 1 + x^2$ on $[-1, 2]$.

7-1 Integration by Parts

Definition
(Integration by Parts)
\[\int u \, dv = uv - \int v \, du. \]

Example
Find \(\int x \sin x \, dx \).

Example
Find \(\int \ln x \, dx \).

Example
Find \(\int t^2 e^t \, dt \).

Example
Find \(\int e^x \sin x \, dx \).
7-1 Integration by Parts

Definition
(Integration by Parts)
\[\int u \, dv = uv - \int v \, du. \]

Example
Find \(\int_{0}^{1} \tan^{-1} x \, dx \). \(u = \tan^{-1} x, \ dv = dx \)

Example
\[\int \sin^n x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x \, dx. \]

Example
\[\int \cos^n x \, dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x \, dx. \]
Example

Find \(\int \cos^3 x \, dx \). \(\cos^2 x + \sin^2 x = 1 \)

Example

Find \(\int \sin^5 x \cos^2 x \, dx \).

Example

Find \(\int_0^\pi \sin^2 x \, dx \). \(\sin^2 x = (1 - \cos 2x)/2 \)

Example

Find \(\int \sin^4 x \, dx \). Use the reduction formula.
Fact

To evaluate $\int \sin^m x \cos^n x \, dx$:

1. If n is odd, separate one $\cos x$ out and use $\cos^2 x = 1 - \sin^2 x$.
2. If m is odd, separate one $\sin x$ out and use $\cos^2 x = 1 - \sin^2 x$.
3. If both m, n are even, use

$$\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}, \quad \sin x \cos x = \frac{\sin 2x}{2}.$$

Example

$\int \sin^4 x \cos^4 x \, dx$
Fact

To evaluate $\int \sin^m x \cos^n x \, dx$:

1. If n is odd, separate one $\cos x$ out and use $\cos^2 x = 1 - \sin^2 x$.
2. If m is odd, separate one $\sin x$ out and use $\cos^2 x = 1 - \sin^2 x$.
3. If both m, n are even, use

 \[\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}, \quad \sin x \cos x = \frac{\sin 2x}{2}. \]

Example

$\int \sin^4 x \cos^4 x \, dx$
Fact

To evaluate $\int \sin^m x \cos^n x \, dx$:

1. If n is odd, separate one $\cos x$ out and use $\cos^2 x = 1 - \sin^2 x$.
2. If m is odd, separate one $\sin x$ out and use $\cos^2 x = 1 - \sin^2 x$.
3. If both m, n are even, use

$$\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}, \quad \sin x \cos x = \frac{\sin 2x}{2}.$$

Example

$$\int \sin^4 x \cos^4 x \, dx$$
7-2 Trig Integrals

Fact

To evaluate $\int \sin^m x \cos^n x \, dx$:

1. If n is odd, separate one $\cos x$ out and use $\cos^2 x = 1 - \sin^2 x$.
2. If m is odd, separate one $\sin x$ out and use $\cos^2 x = 1 - \sin^2 x$.
3. If both m, n are even, use

 $$\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}, \quad \sin x \cos x = \frac{\sin 2x}{2}.$$

Example

$$\int \sin^4 x \cos^4 x \, dx$$
7-2 Trig Integrals

Example

Find \(\int \tan^6 x \sec^4 x \, dx \). \(\sec^2 x = 1 + \tan^2 x \), \(u = \tan x \), \(du = \sec^2 x \, dx \)

Example

Find \(\int \tan^5 x \sec^7 x \, dx \). \(u = \sec x \), \(du = \sec x \tan x \, dx \)

Example

Find \(\int \tan x \, dx = \ln |\sec x| + C \), \(\tan x = \frac{\sin x}{\cos x} \)

Example

Find \(\int \sec x \, dx = \ln |\sec x + \tan x| + C \)
7-2 Trig Integrals

Fact

To evaluate \(\int \tan^m x \sec^n x \, dx \):

1. If \(n \) is even, separate one \(\sec^2 x \) out and use \(\sec^2 x = 1 + \tan^2 x \).
2. If \(m \) is odd, separate one \(\sec x \tan x \) out and use \(\tan^2 x = \sec^2 x - 1 \).

Example

\(\int \tan^3 x \, dx \); use \(\tan^2 x = \sec^2 x - 1 \) first then follow (1).

Example

\(\int \sec^3 x \, dx \); use integration by parts: \(u = \sec x, \ dv = \sec^2 x \, dx \)

\[- \int \tan^2 x \sec x \, dx = - \int (\sec^2 x - 1) \sec x \, dx = " - " \int \sec^3 x \, dx + \int \sec x \, dx \]
7-2 Trig Integrals

Fact

To evaluate \(\int \tan^m x \sec^n x \, dx \):

1. If \(n \) is even, separate one \(\sec^2 x \) out and use \(\sec^2 x = 1 + \tan^2 x \).
2. If \(m \) is odd, separate one \(\sec x \tan x \) out and use \(\tan^2 x = \sec^2 x - 1 \).

Example

\(\int \tan^3 x \, dx \); use \(\tan^2 x = \sec^2 x - 1 \) first then follow (1).

Example

\(\int \sec^3 x \, dx \); use integration by parts: \(u = \sec x \), \(dv = \sec^2 x \, dx \)

\(- \int \tan^2 x \sec x \, dx = - \int (\sec^2 x - 1) \sec x \, dx = " - " \int \sec^3 x \, dx + \int \sec x \, dx \)
7-2 Trig Integrals

Fact

To evaluate $\int \tan^m x \sec^n x \, dx$:

1. If n is even, separate one $\sec^2 x$ out and use $\sec^2 x = 1 + \tan^2 x$.
2. If m is odd, separate one $\sec x \tan x$ out and use $\tan^2 x = \sec^2 x - 1$.

Example

$\int \tan^3 x \, dx$; use $\tan^2 x = \sec^2 x - 1$ first then follow (1).

Example

$\int \sec^3 x \, dx$; use integration by parts: $u = \sec x$, $dv = \sec^2 x \, dx$

\[- \int \tan^2 x \sec x \, dx = - \int (\sec^2 x - 1) \sec x \, dx = "-" \int \sec^3 x \, dx + \int \sec x \, dx\]
7-2 Trig Integrals

Fact

Product-Sum Formulas

1. \(\sin A \cos B = \frac{1}{2} \left[\sin(A - B) + \sin(A + B) \right] \)
2. \(\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \)
3. \(\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)] \)

Example

\(\int \sin 4x \cos 5x \, dx \)
7-2 Trig Integrals

Fact

Product-Sum Formulas

1. \(\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)] \)
2. \(\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \)
3. \(\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)] \)

Example

\[\int \sin 4x \cos 5x \, dx \]
7-3 Trig Substitution

Fact

Table of Trig Substitutions

1. \(\sqrt{a^2 - x^2} \Rightarrow x = a \sin \theta, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \quad 1 - \sin^2 \theta = \cos^2 \theta. \)
2. \(\sqrt{a^2 + x^2} \Rightarrow x = a \tan \theta, \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}, \quad 1 + \tan^2 \theta = \sec^2 \theta. \)
3. \(\sqrt{x^2 - a^2} \Rightarrow x = a \sec \theta, \quad 0 \leq \theta < \frac{\pi}{2} \text{ or } \pi \leq \theta < \frac{3\pi}{2}, \quad \sec^2 \theta - 1 = \tan^2 \theta. \)

Example

\(\int \frac{\sqrt{9-x^2}}{x^2} \, dx, \quad \int \frac{1}{x^2\sqrt{x^2+4}} \, dx, \quad \int \frac{x}{\sqrt{x^2+4}} \, dx, \quad \int \frac{1}{\sqrt{x^2-a^2}} \, dx. \)
Fact

Table of Trig Substitutions

1. \(\sqrt{a^2 - x^2} \Rightarrow x = a \sin \theta, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \quad 1 - \sin^2 \theta = \cos^2 \theta. \)

2. \(\sqrt{a^2 + x^2} \Rightarrow x = a \tan \theta, \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}, \quad 1 + \tan^2 \theta = \sec^2 \theta. \)

3. \(\sqrt{x^2 - a^2} \Rightarrow x = a \sec \theta, \quad 0 \leq \theta < \frac{\pi}{2} \text{ or } \pi \leq \theta < \frac{3\pi}{2}, \quad \sec^2 \theta - 1 = \tan^2 \theta. \)

Example

\[
\int \frac{\sqrt{9-x^2}}{x^2} \, dx, \quad \int \frac{1}{x^2 \sqrt{x^2+4}} \, dx, \quad \int \frac{x}{\sqrt{x^2+4}} \, dx, \quad \int \frac{1}{\sqrt{x^2-a^2}} \, dx.
\]
7-3 Trig Substitution

Fact

Table of Trig Substitutions

1. \(\sqrt{a^2 - x^2} \Rightarrow x = a \sin \theta, \ -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \ 1 - \sin^2 \theta = \cos^2 \theta. \)
2. \(\sqrt{a^2 + x^2} \Rightarrow x = a \tan \theta, \ -\frac{\pi}{2} < \theta < \frac{\pi}{2}, \ 1 + \tan^2 \theta = \sec^2 \theta. \)
3. \(\sqrt{x^2 - a^2} \Rightarrow x = a \sec \theta, \ 0 \leq \theta < \frac{\pi}{2} \text{ or } \pi \leq \theta < \frac{3\pi}{2}, \ \sec^2 \theta - 1 = \tan^2 \theta. \)

Example

\[\int_0^{3\sqrt{3}/2} \frac{x^3}{(4x^2+9)^{3/2}} \, dx, \quad \int \frac{x}{\sqrt{3-2x-x^2}} \, dx \]
7-4 Partial Fractions (Long Division Reduction)

Fact

Long Division Algorithm

\[
\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)}
\]

Example

\[
\int \frac{x^3 + x}{x - 1} \, dx
\]
Fact

If the denominator \(g(x) = (a_1x + b_1)(a_2x + b_2) \cdots (a_kx + b_k) \) where no factor is repeated, then

\[
\frac{f(x)}{g(x)} = \frac{A_1}{a_1x + b_1} + \frac{A_2}{a_2x + b_2} + \cdots + \frac{A_k}{a_kx + b_k}
\]

Example

\[
\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} \, dx
\]

\[
\int \frac{1}{x^2 - a^2} \, dx
\]
Fact

If some factors are repeated, say, \((a_1x + b_1)^r\), then one replaces

\[
\frac{A_1}{a_1x + b_1}
\]

by

\[
\frac{A_1}{a_1x + b_1} + \frac{A_2}{(a_1x + b_1)^2} + \cdots + \frac{A_r}{(a_1x + b_1)^r},
\]

and do this for each repeated factor.

Example

\[
\frac{x^3 - x + 1}{x^2(x - 1)^3} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 1} + \frac{D}{(x - 1)^2} + \frac{E}{(x - 1)^3}
\]

\[
\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} \, dx
\]
7-4 Partial Fractions (Distinct Irreducible Quadratic Factors)

Fact

If there is an irreducible quadratic factor \(ax^2 + bx + c \), then in addition to the partial fractions in previous cases, one adds

\[
\frac{Ax + B}{ax^2 + bx + c}.
\]

Example

\[
\frac{x}{(x - 2)(x^2 + 1)(x^2 + 4)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{x^2 + 4}
\]

Note that

\[
\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C.
\]
7-4 Partial Fractions (Repeated Irreducible Quadratic Factors)

Fact

If there is a repeated irreducible quadratic factor \((ax^2 + bx + c)^r\), then in addition to the partial fractions in previous cases, one replaces

\[
\frac{Ax + B}{ax^2 + bx + c}
\]

by

\[
\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \cdots + \frac{A_rx + B_r}{(ax^2 + bx + c)^r}.
\]

Example

\[
\frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2}
\]

\[
\int \frac{\sqrt{x + 4}}{x} \, dx; \; u = \sqrt{x + 4}
\]
7-5 Integration Strategy

Example

\[\int \frac{\tan^3 x}{\cos^3 x} \, dx; \quad \frac{\tan^3 x}{\cos^3 x} = \tan^3 x \sec^3 x = \frac{\sin^3 x}{\cos^6 x} \]
\[
\begin{align*}
&= \sec x \quad u = \sec x \\
&= \cos x \quad u = \cos x
\end{align*}
\]

Example

\[\int e^{\sqrt{x}} \, dx = 2 \int ue^u \, du \]

Example

\[\int \frac{1}{x\sqrt{\ln x}} \, dx = \int \frac{1}{\sqrt{u}} \, du; \quad \int \sqrt{\frac{1-x}{1+x}} \, dx, \quad \int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C
\]

\[
\begin{align*}
&= \sqrt{u} \\
&= u
\end{align*}
\]
7-5 Integration Strategy

Example

\[
\int \frac{\tan^3 x}{\cos^3 x} \, dx; \quad \frac{\tan^3 x}{\cos^3 x} = \tan^3 x \sec^3 x = \frac{\sin^3 x}{\cos^6 x}
\]

\(u = \sec x\)

\(u = \cos x\)

Example

\[
\int e^{\sqrt{x}} \, dx = 2 \int u e^u \, du
\]

Example

\[
\int \frac{1}{x \sqrt{\ln x}} \, dx = \int \frac{1}{\sqrt{u}} \, du; \quad \int \sqrt{\frac{1-x}{1+x}} \, dx, \quad \int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C
\]

\(u = u\)

\(u = \sin^{-1} x + C\)

7-5 Integration Strategy

Example

\[
\int \frac{\tan^3 x}{\cos^3 x} \, dx; \quad \tan^3 x = \tan^3 x \sec^3 x = \frac{\sin^3 x}{\cos^6 x}
\]

\(u = \sec x\)

\(u = \cos x\)

Example

\[
\int e^{\sqrt{x}} \, dx = 2 \int ue^u \, du
\]

Example

\[
\int \frac{1}{x \sqrt{\ln x}} \, dx = \int \frac{1}{\sqrt{u}} \, du; \quad \int \sqrt{\frac{1-x}{1+x}} \, dx, \quad \int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C
\]

\(u = \sqrt{\ln x}\)

\(u = \sqrt{\frac{1-x}{1+x}}\)

\(u = \sqrt{1-x^2}\)
7-7 Approximation Integration

Fact

\[
\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} f(x_{i-1}) \Delta x \quad \text{(left point approximation)}
\]

\[
\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} f(x_{i}) \Delta x \quad \text{(right point approximation)}
\]

\[
\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} f\left(\frac{x_{i-1} + x_{i}}{2}\right) \Delta x \quad \text{(midpoint approximation)}
\]
7-7 Approximation Integration

Fact

\[\int_a^b f(x) \, dx \approx \sum_{i=1}^{n} f(x_{i-1}) \Delta x \quad \text{(left point approximation)} \]

\[\int_a^b f(x) \, dx \approx \sum_{i=1}^{n} f(x_i) \Delta x \quad \text{(right point approximation)} \]

\[\int_a^b f(x) \, dx \approx \sum_{i=1}^{n} \left[\frac{f(x_{i-1}) + f(x_i)}{2} \right] \Delta x \quad \text{(Trapezoidal Rule)} \]

Trapezoidal = average of the left and the right
7-7 Approximation Integration

Definition

The **error** in an approximation is defined to the

the error = the exact value − the approximation.

Example

The Trapezoidal Rule for $\int_{1}^{2} \frac{1}{x} \, dx$ where $n = 5$ gives the approximation

$$T = 0.695635,$$

then

$$\text{error} = \int_{1}^{2} \frac{1}{x} \, dx - T = \ln 2 - T = -0.002488.$$
7-7 Approximation Integration

Theorem

(Error Bounds) Suppose

\[|f''(x)| \leq K \quad \text{for } a \leq x \leq b. \]

Then

\[|E_T| \leq \frac{K(b - a)^3}{12n^2}, \quad |E_M| \leq \frac{K(b - a)^3}{24n^2}, \]

where \(E_T \) and \(E_M \) denote respectively the errors in the Trapezoidal and Midpoint Rules.

Example

The Trapezoidal Rule of \(\int_1^2 \frac{1}{x} \, dx \) for \(n = 5 \) yields

\[|E_T| \leq \frac{2(2 - 1)^3}{12 \cdot 5^2}. \]
Theorem

(Error Bounds) Suppose

\[|f''(x)| \leq K \text{ for } a \leq x \leq b. \]

Then

\[|E_T| \leq \frac{K(b-a)^3}{12n^2}, \quad |E_M| \leq \frac{K(b-a)^3}{24n^2}, \]

where \(E_T \) and \(E_M \) denote respectively the errors in the Trapezoidal and Midpoint Rules.

Example

How large should we take \(n \) in order to guarantee that the Trapezoidal approximation for \(\int_1^2 \frac{1}{x} \, dx \) is accurate within 0.0001?

\[|E_T| \leq \frac{2(2-1)^3}{12 \cdot n^2} < 0.0001 \]
Theorem

(Simpson’s Rule) Assume \(n \) is an even number.

\[
\int_a^b f(x) \, dx \approx \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right],
\]

where \(n \) is even and \(\Delta x = (b - a)/n \).

pattern = 1, 4, 2, 4, 2, \cdots , 4, 2, 4, 1

Theorem

(Error Bound) Suppose

\[|f^{(4)}(x)| \leq K, \quad a \leq x \leq b. \]

Then

\[|E_s| \leq \frac{K(b - a)^5}{180n^4}. \]
4-4 L’Hospital’s Rule

Theorem

Let \(f \) and \(g \) be differentiable on an open interval \(I \) containing \(a \). Suppose that

\[
\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x),
\]

or that

\[
\lim_{x \to a} f(x) = \pm \infty \quad \text{and} \quad \lim_{x \to a} g(x) = \pm \infty.
\]

Then

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},
\]

provided that the limit on the right side exists (or is \(\infty \) or \(-\infty \)).

Examples

\[
\lim_{x \to 1} \frac{\ln x}{x - 1}, \quad \lim_{x \to \infty} \frac{e^x}{x^2}, \quad \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}, \quad \lim_{x \to 0} \frac{\tan x - x}{x^3}
\]
Theorem

Let f and g be differentiable on an open interval I containing a. Suppose that

$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x),$$

or that

$$\lim_{x \to a} f(x) = \pm \infty \quad \text{and} \quad \lim_{x \to a} g(x) = \pm \infty.$$

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided that the limit on the right side exists (or is ∞ or $-\infty$).

Examples

$$\lim_{x \to 0^+} x \ln x, \quad \lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right), \quad \lim_{x \to \infty} (e^x - x)$$
4-4 L’Hospital’s Rule

Theorem

Let f and g be differentiable on an open interval I containing a. Suppose that

$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x),$$

or that

$$\lim_{x \to a} f(x) = \pm \infty \quad \text{and} \quad \lim_{x \to a} g(x) = \pm \infty.$$

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided that the limit on the right side exists (or is ∞ or $-\infty$).

Examples

$$\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x}, \quad \lim_{x \to 0^+} x^x$$
7-8 Improper Integrals

Definitions

Improper integrals of type 1 (over unbounded intervals):

1. \[\int_a^\infty f(x) \, dx = \lim_{t \to \infty} \int_a^t f(x) \, dx \]

2. \[\int_{-\infty}^b f(x) \, dx = \lim_{t \to \infty} \int_t^b f(x) \, dx \]

3. \[\int_{-\infty}^\infty f(x) \, dx = \int_{-\infty}^a f(x) \, dx + \int_a^\infty f(x) \, dx \]

Example

Determine whether the (improper) integral \(\int_1^\infty \frac{1}{x} \, dx \) is convergent or divergent. More generally, how about \(\int_1^\infty \frac{1}{x^p} \, dx \) for \(p > 0 \)?
7-8 Improper Integrals

Definitions

Improper integrals of type 2 (with discontinuities):

1. **f is discontinuous at b:**

 \[
 \int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx
 \]

2. **f is discontinuous at a:**

 \[
 \int_a^b f(x) \, dx = \lim_{t \to a^+} \int_t^b f(x) \, dx
 \]

3. **f is discontinuous at c, where $a < c < b$:**

 \[
 \int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx
 \]
7-8 Improper Integrals

Theorem

(Comparison Test) If \(0 \leq g \leq f\), then

1. If \(\int_{a}^{\infty} f(x) \, dx\) is convergent, then \(\int_{a}^{\infty} g(x) \, dx\) is convergent.

2. If \(\int_{a}^{\infty} g(x) \, dx\) is divergent, then \(\int_{a}^{\infty} f(x) \, dx\) is divergent.

Example

\(\int_{0}^{\infty} e^{-x^2} \, dx\) is convergent and \(\int_{1}^{\infty} \frac{1+e^{-x}}{x} \, dx\) is divergent.

Example

\(\int_{2}^{5} \frac{1}{\sqrt{x-2}} \, dx\), \(\int_{0}^{\pi/2} \sec x \, dx\), \(\int_{0}^{3} \frac{1}{x-1} \, dx\), \(\int_{0}^{1} \ln x \, dx\)
8-1 Arc Length

Definition
If f' is continuous on $[a, b]$ then the length of the curve $y = f(x)$, $a \leq x \leq b$, is given by

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$

Using Leibniz notation, the formula can be rewritten as

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx.$$

Example
Find L for $y^2 = x^3$ between the points $(1, 1)$ and $(4, 8)$.

8-1 Arc Length

Definition

If \(g'(y) \) is continuous on \([c, d]\) then the length of the curve \(x = g(y) \), \(c \leq y \leq d \), is given by

\[
L = \int_c^d \sqrt{1 + [g'(y)]^2} \, dy.
\]

Using Leibniz notation, the formula can be rewritten as

\[
L = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy.
\]

Example

Find \(L \) for \(y^2 = x \) between the points \((0,0)\) and \((1,1)\).
8-1 Arc Length

Definition

Given a curve \(y = f(x), \ a \leq x \leq b \), let

\[
s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt, \quad a \leq x \leq b,
\]

be the arc length from point \((a, f(a))\) to \((x, f(x))\). \(s(x)\) is called the arc length function. Note that FTC implies that

\[
s'(x) = \sqrt{1 + [f'(x)]^2}, \quad \text{or equivalently,}
\]

\[
ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx.
\]

Example

Find \(s(x) \) for \(y = x^2 - \frac{1}{8} \ln x \) starting at the point \((1, 1)\).
8-2 Area of a Surface of Revolution

Definition

Consider the surface obtained by rotating the curve $y = f(x) \geq 0$, $a \leq x \leq b$, about the x-axis, the surface area is given by

$$S = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, dx = \int_a^b 2\pi y \sqrt{1 + \left[\frac{dy}{dx}\right]^2} \, dx = \int_a^b 2\pi y ds.$$

For rotation about y-axis of $x = g(y)$, $c \leq y \leq d$, we have

$$S = \int_c^d 2\pi g(y) \sqrt{1 + [g'(y)]^2} \, dy = \int_c^d 2\pi x \sqrt{1 + \left[\frac{dx}{dy}\right]^2} \, dy = \int_c^d 2\pi x ds.$$

Example

Find S when rotating $y = \sqrt{4-x^2}$, $-1 \leq x \leq 1$, about x-axis.
8-2 Area of a Surface of Revolution

Definition

Consider the surface obtained by rotating the curve \(y = f(x) \geq 0, \ a \leq x \leq b \), about the \(x \)-axis, the surface area is given by

\[
S = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, dx = \int_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx = \int_a^b 2\pi y \, ds.
\]

For rotation about \(y \)-axis of \(x = g(y) \), \(c \leq y \leq d \), we have

\[
S = \int_c^d 2\pi g(y) \sqrt{1 + [g'(y)]^2} \, dy = \int_c^d 2\pi x \sqrt{1 + \left(\frac{dx}{dy} \right)^2} \, dy = \int_c^d 2\pi x \, ds.
\]

Example

Find \(S \) when rotating \(y = e^x, \ 0 \leq x \leq 1 \), about \(x \)-axis.
3-8 Exponential Growth and Decay

Definition

If $y(t)$ is the value of a quantity y at the time t and if the rate of change of y with respect to t is proportional to its size $y(t)$ at any time t, then

$$\frac{dy}{dt} = ky \quad \text{for some constant } k,$$

and the only solution for this differential equation is

$$y(t) = y(0)e^{kt}.$$

The constant k is called the **relative growth rate** of the quantity y.

Example

Suppose the growth rate of a certain population is proportional to the population size $P(t)$, and say, $P(0) = 2560$ and $P(10) = 3040$. Then the relative growth rate is $k = 0.017$ and $P(t) = 2560e^{kt}$.
Example

The half-life of a certain radioactive element is 1590 years.

1. Find a formula for the mass $m(t)$ of the element that remains after t years. Suppose $m(0) = 100$.

2. Find the mass $m(1000)$ after 1000 years.

3. When will the mass be reduced to 30?

Example

Newton’s law of cooling as a differential equation:

$$\frac{dT}{dt} = k(T - T_s),$$

where k is a constant and T_s is the (constant) temperature of surroundings. Make a change of variable $y(t) = T(t) - T_s$ to rewrite it as $y' = ky$.
Example

The half-life of a certain radioactive element is 1590 years.

1. Find a formula for the mass $m(t)$ of the element that remains after t years. Suppose $m(0) = 100$.
2. Find the mass $m(1000)$ after 1000 years.
3. When will the mass be reduced to 30?

Example

Newton’s law of cooling as a differential equation:

$$\frac{dT}{dt} = k(T - T_s),$$

where k is a constant and T_s is the (constant) temperature of surroundings. Make a change of variable $y(t) = T(t) - T_s$ to rewrite it as $y' = ky$.

Example

Denote by \(A(t) \) the amount of a financial investment at time \(t \). The continuous compounding of \(A \) with interest rate \(r \) is governed by the differential equation:

\[
\frac{dA}{dt} = rA(t).
\]

For example, $1000 invested for 3 years at 6% interest rate will have its value

\[
A(3) = 1000e^{(0.06)3} = 1197.22.
\]
Example

The equation

\[
\frac{dP}{dt} = kP \left(1 - \frac{P}{M}\right)
\]

shows that

1. If \(P \) is small, then

\[
\frac{dP}{dt} \approx kP. \text{ (Initially, the growth rate is proportional to } P. \text{)}
\]

2. If \(P > M \), then

\[
\frac{dP}{dt} < 0. \text{ (} P \text{ decreases if it ever exceeds the constant } M. \text{)}
\]
Example

Show that every member of the family of functions

\[y = \frac{1 + ce^t}{1 - ce^t}, \quad c \text{ is any constant}, \]

satisfies the differential equation

\[y' = \frac{1}{2} (y^2 - 1). \]

Moreover, the solution of the equation \(y' = \frac{1}{2} (y^2 - 1) \) satisfying the initial condition \(y(0) = 2 \) is

\[y = \frac{1 + \frac{1}{3}e^t}{1 - \frac{1}{3}e^t}. \]
9-3 Separable Equations

Definition

\[\frac{dy}{dx} = g(x)f(y) \]

Example

\[y' = \frac{x^2}{y^2}, \quad y(0) = 2. \]

Example

\[y' = \frac{6x^2}{2y + \cos y} \]

Example

\[y' = x^2y \]
Example

A water tank contains 20 kg of salt dissolved in 5000 L of water. Salted water that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25 L/minute. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after 30 minutes?

\[y(t) = \text{amount of salt at time } t \]
\[y'(t) = \text{(rate in)} - \text{(rate out)}, \quad y(0) = 20. \]

rate in \[= 0.03 \frac{kg}{L} \times 25 \frac{L}{min} = 0.75 \frac{kg}{min} \]

rate out \[= \frac{y(t)}{5000} \frac{kg}{L} \times 25 \frac{L}{min} = \frac{y(t)}{200} \frac{kg}{min} \]
To be continued
To be continued
To be continued
To be continued
Examples

Example
Examples

Example