

COURSE SYLLABUS

BIOL 226 - From Genes to Genomics

Course code: CRN 22176 Winter (T2) 2022 Term: Course credits: 3.0 Delivery: Lecture & Lab Class session: 01 Start Date: January 10, 2022 Lecture room: Thorvaldson 271 Lab room: Thorv. G77. In person Lectures: M-W-F in person Labs: **MTWRF** Website/notes: Canvas access Prerequisites Biology 120.3 or 110.6

General Description

Due to the recent University's announcement, the first day of class will be <u>January 10th, 2022</u>. Initially, classes will be delivered remotely for two weeks until <u>January 24th, 2022</u>, when in-person activities will resume. Please keep checking the website https://covid19.usask.ca/all.php for updated information about the University's COVID-19 policies and recommendations. Any changes to the calendar, delivery method or important information will be provided through email or the Canvas website.

The content of the biol-226 course ranges from Mendelian genetics to computational procedures based on the complete genome. Examples from eukaryotic species, including humans, are emphasized. Topics include classical transmission genetics, cytogenetics, DNA structure and replication, gene function, mutation and repair, regulation, recombinant DNA technology, and structural, functional, and comparative genomics.

Prerequisites: Biology 120.3 or 110.6

Learning Context

If the conditions allow it, the BIOL226 course will be offered with face-to-face lectures and laboratories after <u>January 24th, 2022</u>. We have strived to make the best during these unprecedented times, and we ask that all participants in the course interact with empathy and care. Lectures will be delivered in-person (if possible) and the instructor may post pdf slides after the class for your revision. Lectures may be recorded, but this is not guaranteed nor an obligation of the instructor. Any other material or communications will be available through the course Canvas website. If you have any questions about how to access these files, please feel free to ask one of the instructors. Class exams (midterm and final), the laboratory component, including laboratory quizzes, will take place on campus. Additional details will be provided during the introductory session on the first day of class.

The University has put together information on tools and technologies to help students navigate the resources needed to be prepared for classes. You can access these resources at https://students.usask.ca/study/get-prepared.php#Setupyourstudyspace

We would also like you to review the Usask Netiquette webpage and encourage you to be mindful of your activities: https://teaching.usask.ca/remote-teaching/netiquette.php. If you are experiencing difficulty, please contact the instructors as soon as possible.

Important guidelines:

It is important that we undertake the in-person elements of this class safely. To do so, the university has developed a set of expectations and safety protocols that all students must follow.

Throughout the term:

- → Protect the pack: Right now, the impact of student choices and activities when not on campus cannot be separated from time spent on campus. In order to "protect the pack", the university is asking all students to be mindful and do whatever possible to lower the risk that you will contract COVID-19 and bring it onto campus.
- ➤ Know what is required and expected of you: One of the critical lessons learned in dealing with COVID-19 is knowing that situations can change, and we must be flexible and ready to adjust our safety protocols. Instead of listing all of the relevant information in your course outline, the university has created a webpage where all up-to-date information around returning to campus is listed. You are responsible for regularly checking the health and safety guidelines https://covid19.usask.ca/about/safety.php#Expectations and knowing what is expected of you throughout the winter term.
- → Follow all guidance: Students are expected to follow all guidance provided by the University's Pandemic Recovery/Response Team (PRT), College/Department, professors, lab instructors, TAs, and any other staff member involved in the in-person academic program activities (e.g., Protective Services, Safety Resources).
- → Key channels of communication: If there is a need for the class to pause meeting in-person for a period of time, you will be notified through email and/or Canvas. If this occurs, you will be provided with detailed information on what you will need to do in place of the in-person class sessions (e.g., read content posted in Canvas, complete learning activities, etc.). Course communications will primarily be submitted through the Canvas learning environment.

Course Overview

This course combines classical genetics with modern molecular analysis. The first half of the course focuses on Mendelian genetics as it relates to the Chromosomal Theory of Inheritance. Practical applications of classical genetics principles such as linkage and recombination in building genetic maps are explored. In the second half, the course focuses on the fundamental molecular processes (transcription and translation) that coordinate the flow of genetic information (the Central Dogma of Molecular Biology). Then, we investigate how the genome is transcriptionally regulated to yield genetic variation at the level of the phenotype. The final component of the course provides insights on how alleles flow in a population and explores the evolutionary forces behind allele frequency changes (population genetics). This course is an introduction to important and basic genetics concepts

that permeate several other fields in the biological sciences and is intended to prepare students for senior molecular biology and genetic courses.

Note: The University of Saskatchewan Learning Charter is intended to define aspirations about the learning experience that the University aims to provide, and the roles to be played in realizing these aspirations by students, instructors, and the institution. A copy of the Learning Charter can be found at: http://www.usask.ca/university secretary/LearningCharter.pdf

Learning Outcomes

By the completion of this course, it is expected that students will be able to:

- 1. Describe Mendel's first and second law of genetics and identify how they relate to cytogenetics.
- 2. Predict the outcome of crosses and to carry out pedigree analysis.
- 3. Outline the principles of recombination and to map genes on chromosomes.
- 4. Recognize how expression of genetic information is related to phenotype
- 5. Describe how alleles behave in populations and identify the processes that contribute to evolutionary change.

Instructors and Contact info:

Lecturer and Lab Coordinator:

Dr. Andres Posso-Terranova

Office: room G77 - THORV Building.

WebEx room: https://usask.webex.com/meet/andres.posso

Ph# 306-966-4431. Email: andres.posso@usask.ca Office Hours: Specific appointments can be set by email.

Head of the Biology Department:

Dr. Christopher Todd

Office: room CSRB 110.5 Ph# 306-966-4497

Email: chris.todd@usask.ca

Instructor Profiles & Other Information:

Dr. Posso-Terranova has been a lecturer for the University of Saskatchewan in previous terms (Biol226 – Fall 2017). At the moment, he is the laboratory coordinator for genetics courses in the Department of Biology. He holds a MSc in plant breeding and genetics and obtained a PhD in evolutionary biology (Usask) working with endangered amphibian species.

Required Resources

- **Textbook**: 'Introduction to Genetic Analysis' 12th edition. Griffiths et. al. 2020. The *ebook* license with Achieve® is available through the bookstore. Achieve is an online platform with several learning resource features (https://store.macmillanlearning.com/ca/digital/intro/achieve) (Not mandatory).
- **Electronic Resources**: Students are encouraged to use Achieve® <u>as a supplementary tool</u> (<u>not for marks</u>). It provides useful study questions and genetics exercises for practicing your understanding of the concepts.
- **Laboratory manual**: Each student <u>is required to purchase</u> an access code from the U of S campus bookstore for downloading an electronic file containing the laboratory manual (https://artsandscience.usask.ca/ebook).

Lecture Topics

The course material is organized around the main topics below:

Part I

TOPIC 1 – Principles of Mendelian inheritance	Griffiths Ch. 2,3
TOPIC 2 – Chromosomal basis of inheritance	Griffiths Ch. 2,3
TOPIC 3 – Extensions of Mendelian principles	Griffiths Ch. 5
TOPIC 4 – Recombination and mapping	Griffiths Ch. 4
TOPIC 5 – Large scale chromosomal changes	Griffiths Ch. 17

Part II

TOPIC 6 – The central dogma of molecular biology	Griffiths Ch. 8,9
TOPIC 7 — Gene isolation and manipulation	Griffiths Ch. 10
TOPIC 8 - Regulation of gene expression in bacteria	Griffiths Ch. 11
TOPIC 9 - Regulation of gene expression in eukaryotes	Griffiths Ch. 12
TOPIC 10 -Population Genetics	Griffiths Ch. 18

Proposed Schedule

Weekly activities indicate the suggested pace of the course and the corresponding topics to be discussed in the lecture sessions. Other important in-person activities are also indicated.

Part I -	- Classical Gen	etics	Mar 2 – WED	Review: Lg scale chromosomal changes		
Week	Date	Activity		Mar 4 – FRI	Midterm Exam. 10:30 a.m	
W1	Jan 10 – MON	Live: Course Introduction			<u>(TBC)</u>	
	Jan 12 – WED	Introduction to genetics				
	Jan 14 – FRI	Live Session	Parti	I – Molecular	Genetics	
W2	Jan 17 – MON	Mendelian Inheritance				
	Jan 19 – WED	Mendelian Inheritance	Week	Date	Activity	
	Jan 21 – FRI	Live Review: Mendelian Inheritance	W9	Mar 7 – MON	Intro: The Central Dogma of Molecular Biology (CDMB)	
W3	Jan 24 – MON	Chromosomal Basis of		Mar 9 – WED	CDMB: Transcription	
VVS	Jan 24 IVION	Inheritance (CBI)		Mar 11– FRI	CDMB: Translation	
	Jan 26 – WED	CBI	W10	Mar 14 – MON	CDMB: review	
	Jan 28 – FRI	CBI		Mar 16 – WED	Gene isolation and manipulation	
W4	Jan 31 – MON	Review: CBI		Mar 18 – FRI	Gene isolation and manipulation	
	Feb 2 – WED	Gene Interactions	\A/1 1	Mar 21 – MON	Regulation of gene expression	
	Feb 4 – FRI	Gene Interactions	W11	Mar 21 – MON	(RGE): bacteria	
W5	Feb 7 – MON	Gene Interactions		Mar 23 – WED	RGE: bacteria	
	Feb 9 – WED	Review: Gene Interactions		Mar 25 – FRI	RGE: bacteria	
	Feb 11 – FRI	Recombination and	W12	Mar 28 – MON	RGE: eukaryotes	
		Mapping Recombination and		Mar 30 – WED	RGE: eukaryotes	
W6	Feb 14 – MON	Mapping		Apr 1 – FRI	RGE: eukaryotes	
	Feb 16 – WED	Review: Recombination and Mapping	W13	Apr 4 – MON	Population genetics: allele frequencies	
	Feb 18 – FRI	Lg scale chromosomal changes		Apr 7 – WED	Population genetics: Hardy- Weinberg principle	
<u>W7</u>	<u>Feb 21 – 25</u>	Midterm break		Apr 9 - FRI	Population genetics: review	
W8	Feb 28 -MON	Lg scale chromosomal				
		changes		<u>TBA</u>	Final examination	

Grading Scheme

Midterm exam 25%. Final exam 35%. Laboratory 40%

Evaluation Components

Midterm Exam:

Value: 25% of final course grade.

Date: Tentative date: Friday, March 4th - 2022, 10:30 am. Lecture room - To be confirmed.

Length: 50 minutes.

Format: Multiple choice problems and questions. In-person activity, written on paper (if conditions allow

it) or through Canvas.

Description: Based on all lecture and study materials prior to the midterm exam date.

Final Exam:

Value: 35% of final course grade.

Date: To be announced (TBA).

Length: 60-180 minutes (TBA).

Format: Multiple choice problems and questions. In-person activity, written on paper (if conditions allow

it) or through Canvas.

Description: The exam is a comprehensive evaluation (i.e., it will cover all lectures and study material). Material

delivered since the midterm exam will be emphasized.

Laboratory:

Value: 40% of final course grade Date: see Laboratory Schedule

Format: Varies by lab

Description: A total of nine (9) lab assignments (20%) must be returned as physical copies (i.e., printed) or

submitted online through Canvas, according to the lab schedule (deadlines). Two lab quizzes (20%) are based on the information provided in the briefings, video material, practical component, and laboratory manual. They will be performed in-person during the scheduled lab sessions and accessible through Canvas. Hence, a laptop computer or larger tablet will be required for taking the quizzes. The format includes multiple choice questions, fill in the blank,

matching concepts, true/false, etc.

Scheduling of Exams

Midterm, final examinations, and lab quizzes must be written on the date scheduled. Final examinations may be scheduled at any time during the examination period in April. Students should therefore avoid making prior travel, employment, or other commitments for this period.

In the event that a student is absent from the midterm exam through no fault of his/her own due to a medical emergency, death in the family, or other valid reasons, documentation must be provided explaining the absence, to assist in the determination of whether permission will be granted for the student to write a deferred midterm exam. Students absent for the midterm lecture exam must advise their instructor and initiate arrangements

for writing a deferred midterm exam within 3 working days of the missed exam, in order to avoid being assigned a grade of zero for the exam.

If a student is absent from the final exam through no fault of his or her own for medical or any other valid reason, he/she must apply to the Dean's Office of the College in which he/she is registered for an opportunity to write a Deferred Final Exam, within 3 working days of the missed exam. Documentation must also be provided to explain the absence from the final exam. Deferred exams may utilize a different format than the regular exam, at the sole discretion of the instructors.

Students are encouraged to review all examination policies and procedures here: https://students.usask.ca/academics/exams.php

University of Saskatchewan Grading System

Students in the BIOL 226 course are reminded that the University has established a grading system to be used in all its courses. Information on literal descriptors for grading at the University of Saskatchewan (reproduced below) can be found at: https://students.usask.ca/academics/grading/grading-system.php

Required Components

Students must write the final exam to pass the course.

Late Assignments

Lab assignments are due on the day and time indicated in Canvas and/or the lab schedule. Extensions are only granted in extraordinary circumstances (notably, as a result of family or medical emergencies) and upon receipt of adequate documentation. It is your responsibility to contact the laboratory coordinator before the due date if possible or as soon after the due date if it was unfeasible to do so beforehand.

Student Feedback:

The Department of Biology or the instructors may survey students regarding the course. This is generally done through an assessment near the end of term.

Lab Schedule (Winter 2022)

Laboratory Schedule Biol226- Winter 2022 (Also available at the Lab's Canvas site)

Date	Week	Lab	Lab Exercise	Key points	Assignments / Lab Quizzes
January 17- 21	1	Through Canvas	Check essential information and general introduction in Canvas (Module 1)	Presentation of lab details and support, how to access the genetics simulator, assignment requirements -Breeding experiment: Set up main cross (P ₁ X P ₂)	·
January 24- 28	2	In person: lab#1	Laboratory # 1. Introduction to genetics and monohybrid crosses	-The different stages of a model organism (<i>Drosophila</i> melanogaster) -Phenotypic traits and male vs. female flies' differentiation <i>Drosophila</i> genetics notation -Breeding experiment: Remove P ₁ and P ₂ flies, score parentals	- Return assignment # 1 at the end of the laboratory session (physical copy or through Canvas)
January 31 - February 4	3	In person: lab # 2	Laboratory # 2. Drosophila breeding experiment: F ₁ generation and dihybrid crosses.	 Obtain and analyze F₁ and F₂ data that illustrate segregation and assortment. Propose a genetics model of inheritance for several traits Breeding experiment: score and analyze F1 flies Set up F₁ x F₁ cross to obtain F₂ generation 	- Return assignment # 2 at the end of the laboratory session (physical copy or through Canvas)
February 7- 11	4	In person: lab#3	Laboratory # 3. Drosophila breeding experiment: (Sex-linked traits).	-Obtained simulated F ₁ data that illustrate sex-linkage Propose a genetic model of inheritance for several traits - Analyze hypothetical crosses that illustrate a gene-interaction -Breeding experiment: Remove F ₁ parental flies and predict F ₂ outcome.	- Return assignment # 3 at the end of the laboratory session (physical copy or through Canvas)
February 14- 18	5	In person: lab # 4	Laboratory # 4. Gene linkage and chromosome mapping.	 Obtain F₁ data that illustrates trihybrid and test-crosses. Describe the difference between independent assortment and gene linkage Map two genes on a chromosome Analyze real-case data from a trihybrid cross to map three genes Breeding experiment: score and analyze F₂ flies 	- Return assignment # 4 at the end of the laboratory session (physical copy or through Canvas)
February 21- 25	6		Midterm break. No lab sessions this week		

		I			- Lab quiz # 1.
					Room G77, during
F.L. 22	7	In person:	Laboratory # 5.	-Describe the <i>Drosophila's</i> protein-	lab session time.
February 28	,	lab # 5	Drosophila eye	pigment differences.	Access through
- March 4		180#3	color: A	- Identify genes (enzymes) that are	Canvas. Topics:
			combination of	involved in the biosynthesis of	Labs 1-4
			protein	_	- Return
			•	protein pigments.	
			pigments	- Recognize the epistatic interactions	assignment # 5 at
				between pigmentation genes.	the end of the
					laboratory
					session (physical
					copy or through
			Labaratary #C	Drawasa a sai antifia humath sais fa ra	Canvas)
			Laboratory # 6. The Chi-square	- Propose a scientific hypothesis for a	- Return
	8	In norcon	(X ²) test: A	genetic cross. - Calculate a X ² statistic value.	assignment # 6 at the end of the
March 7-11	٥	In person: lab#6	statistical test		
		180 # 6	for	 Use a calculated X² value to determine whether there is a 	laboratory
					session (physical
			experiments.	statistically significant difference between hypotheses	copy or through Canvas)-
			Laboratory # 7.	-Determine the genetics model of	- Return
			Drosophila class	inheritance of fourgenes	assignment # 7 at
	9	In person:	data review:	- Propose a scientific hypothesis	the end of the
March 14-18	9	lab # 7	hypotheses	(dihybrid cross) and statistically test	laboratory
		100 # 7	testing and	its validity.	session (physical
			gene mapping	- Map three genes on a chromosome	copy or through
			gene mapping	wap till ce genes on a cill onlosome	Canvas)-
			Laboratory #8.	- Establish the link between genotype	- Return
			DNA	and the white-eyes phenotype in	assignment #8 at
March 21-25		In person:	genotyping of	Drosophila.	the end of the
Water 21-25	11	lab # 8	Drosophila	- Identify two common molecular	laboratory
			mutants: The	genetics methods.	session (physical
			white-1 locus	- Perform a PCR test to identify	copy or through
			(w)	<i>Drosophila</i> mutants.	Canvas)-
				- Perform a simulated PCR test to	
				differentiate DNA sequences.	
			Laboratory # 9.		- Return
	12		Population	- Describe the gene pool concept.	assignment #8 at
March 28 -		In person:	genetics: Gene	-Estimate genotype and allele	the end of the
April 1		lab # 9	pool and allele	frequencies based on phenotypic	laboratory
•			frequencies	data.	session (physical
					copy or through
					Canvas)-
					Lab quiz # 2.
			Lab evaluation		Room G77, during
April 4-8	13		and lab quiz #	- Lab evaluation and Lab quiz # 2	lab session time.
			2.		Access through
					Canvas. Topics:
					Labs 5-9

Recording of lectures or video conferences

Use of video and recordings in the course (if needed)

Due to the pandemic situation, teaching and learning conditions may unexpectedly change. If video conference sessions that include your participation are recorded, this material will be available only to those students registered in the course (through Canvas and/or Panopto). If your instructor provides you with class recordings, please remember that this material belongs to your instructor, the University, and/or others (like a guest lecturer) depending on the circumstance of each session and are protected by copyright. Do not download, copy, or share recordings without the explicit permission of the instructor.

For questions about recording and use of sessions in which you have participated, including any concerns related to your privacy, please contact your instructor. More information on class recordings can be found in the Academic Courses Policy https://policies.usask.ca/policies/academic-affairs/academic-courses.php#5ClassRecordings

Required video use:

Only if it is required to record video conferences, you may choose to have your video camera on during the conferencing sessions. It is not required for planned course activities.

Copyright

Course materials are provided to you based on your registration in a class, and anything created by your professors and instructors is their intellectual property, unless materials are designated as open education resources. This includes exams, PowerPoint/PDF slides and other course notes. Additionally, other copyright-protected materials created by textbook publishers and authors may be provided to you based on license terms and educational exceptions in the Canadian Copyright Act (see http://laws-lois.justice.gc.ca/eng/acts/C-42/index.html).

Before you copy or distribute others' copyright-protected materials, please ensure that your use of the materials is covered under the University's Fair Dealing Copyright Guidelines available at https://library.usask.ca/copyright/general-information/fair-dealing-guidelines.php. For example, posting others' copyright-protected materials on the open web is not covered under the University's Fair Dealing Copyright Guidelines, and doing so requires permission from the copyright holder.

For more information about copyright, please visit https://library.usask.ca/copyright/index.php where there is information for students, or contact the University's Copyright Coordinator at copyright.coordinator@usask.ca or 306-966-8817.

Integrity in a Learning Context

The University of Saskatchewan is committed to the highest standards of academic integrity and honesty. Students are expected to be familiar with these standards regarding academic honesty and to uphold the policies of the University in this respect. Students are particularly urged to familiarize themselves with the provisions of the Student Conduct & Appeals section of the University Secretary Website and avoid any behavior that could

potentially result in suspicions of cheating, plagiarism, misrepresentation of facts and/or participation in an offence. Academic dishonesty is a serious offence and can result in suspension or expulsion from the University.

All students should read and be familiar with the Regulations on Academic Student Misconduct (https://secretariat.usask.ca/student-conduct-appeals/academic-misconduct.php) as well as the Standard of Student Conduct in Non-Academic Matters and Procedures for Resolution of Complaints and Appeals (https://secretariat.usask.ca/student-conduct-appeals/academic-misconduct.php#IXXIIAPPEALS)

For more information on what academic integrity means for students, see the Academic Integrity section of the University Library website at: https://library.usask.ca/academic-integrity#AboutAcademicIntegrity

You are encouraged to complete the Academic Integrity Tutorial to understand the fundamental values of academic integrity and how to be a responsible scholar and member of the USask community - https://library.usask.ca/academic-integrity.php#AcademicIntegrityTutorial. As part of the laboratory component, you are required to complete the first tutorial module if you have not done it in previous courses.

Access and Equity Services (AES) for Students

Students who have disabilities (learning, medical, physical, or mental health) are strongly encouraged to register with Access and Equity Services (AES) if they have not already done so. Students who suspect they may have disabilities should contact AES for advice and referrals at any time. Those students who are registered with AES with mental health disabilities and who anticipate that they may have responses to certain course materials or topics, should discuss course content with their instructors prior to course add / drop dates. In order to access AES programs and supports, students must follow AES policy and procedures. For more information or advice, visit https://students.usask.ca/health/centres/access-equity-services.php, or contact AES at 306-966-7273 or aes@usask.ca.

Students registered with AES may request alternative arrangements for mid-term and final examinations. Students must arrange such accommodations through AES by the stated deadlines. Instructors shall provide the examinations for students who are being accommodated by the deadlines established by AES.

For information on AES services and remote learning please visit https://updates.usask.ca/info/current/accessibility.php#AccessandEquityServices

Student Supports

• Academic Help for Students

The University Library offers a range of learning and academic support to assist USask undergrad and graduate students. For information on specific services, please see the Learning page on the Library web site https://library.usask.ca/support/learning.php

- Study skills materials for online learning https://libguides.usask.ca/studyskills
- A guide on netiquette, principles to guide respectful online learning interactions https://teaching.usask.ca/remote-teaching/netiquette.php

Teaching, Learning and Student Experience

Teaching, Learning and Student Experience (TLSE) provides developmental and support services and programs to students and the university community. For more information, see the students' web site http://students.usask.ca

• College Supports

Students in Arts & Science are encouraged to contact the Undergraduate Student Office and/or the Trish Monture Centre for Success with any questions on how to choose a major; understand program requirements; choose courses; develop strategies to improve grades; understand university policies and procedures; overcome personal barriers; initiate pre-career inquiries; and identify career planning resources. Contact information is available at: (http://artsandscience.usask.ca/undergraduate/advising/)

• Financial Support

Any student who faces challenges securing their food or housing and believes this may affect their performance in the course is urged to contact Student Central (https://students.usask.ca/student-central.php).

• Aboriginal Students' Centre

The Aboriginal Students' Centre (ASC) is dedicated to supporting Aboriginal student academic and personal success. The centre offers personal, social, cultural and some academic supports to Métis, First Nations, and Inuit students. The centre is also dedicated to intercultural education, brining Aboriginal and non-Aboriginal students together to learn from, with and about one another in a respectful, inclusive and safe environment. Students are encouraged to visit the ASC's Facebook page (https://www.facebook.com/aboriginalstudentscentre/) to learn more.

International Student and Study Abroad Centre

The International Student and Study Abroad Centre (ISSAC) supports student success and facilitates international education experiences at USask and abroad. ISSAC is here to assist all international undergraduate, graduate, exchange and English as a Second Language students in their transition to the University of Saskatchewan and to life in Canada. ISSAC offers advising and support on matters that affect international students and their families and on matters related to studying abroad as University of Saskatchewan students. Please visit https://students.usask.ca/international/issac.php for more information.

Treaty Acknowledgement

As we engage in Teaching and Learning, we would like to acknowledge that the Saskatoon campus of the University of Saskatchewan is on Treaty Six Territory and the Homeland of the Métis. We pay our respect to the First Nation and Métis ancestors of this place and reaffirm our relationship with one another. We would also like to recognize that some may be attending this course from other traditional Indigenous lands. We ask that you take a moment to make your own Land Acknowledgement to the peoples of those lands. In doing so, we are actively participating in reconciliation as we navigate our time in this course, learning and supporting each other.