Students are encouraged to attend Departmental colloquia and to participate in at least one of the ongoing Departmental seminars. For schedules, see the Event schedule.

Note: If any of the information published by the Department of Mathematics and Statistics conflicts with that published in the University of Saskatchewan Course Calendar, then the University of Saskatchewan Calendar shall be considered the correct and official document.
  • MATH 839 (01) Methods of Applied Mathematics I. Prof. W. Abou Salem
  • STAT 812 (01) Computational Statistics. Prof. L. Li
  • STAT 834 (01) Advanced Experimental Design. Prof. S. Khan
  • STAT 845 (01) Statistical Methods for Research. Prof. W. Laverty
  • MATH 818 (06) Applied Math / Math Modelling. Prof. C. Gils
  • MATH 838 (02) Methods of Applied Mathematics II. Prof. A. Sowa
  • STAT 846 (02) Statistical Inference. Prof. L. Li
  • STAT 848 (02) Multivariate Data Analysis. Prof. W. Laverty
  • MATH 811 (01) Numerical Solution of Ordinary and Partial Differential Equations. Prof W. Abou Salem
  • MATH 818 (01) Special Topics in Applied Mathematics – Differential Geometry. Prof. G. Patrick
  • MATH 872 (01) Special Topics in Real Algebra and Valuation Theory. Prof. F-V Kuhlmann
  • MATH 898 (01) Research Topics in Free Probability and Random Matrices. Prof JC Wang
  • STAT 845 (01) Statistical Methods for Research. Prof. W. Laverty
  • STAT 846 (01) Special Topics in Probability and Statistics: Topological Data Analysis. Prof. C. Soteros
  • STAT 850 (01) Mathematical Statistics and Inference. Prof. J. Liu
  • MATH 818 (02) Special Topics in Applied Mathematics: Applied Group Theory for Scientists. Prof. J. Szmigielski
  • MATH 818 (06) Special Topics in Applied Mathematics: Mathematical Modelling. Prof. A. Shevyakov
  • MATH 872 (03) Special Topics: Cryptography. Prof. F-V Kuhlmann
  • STAT 846 (02) Special Topics in Probability and Statistics: Probability & Stochastic Processes. Prof. C. Soteros
  • STAT 851 (02) Linear Models. Prof. M. Bickis
  • MATH 839 (01) Methods of Applied Mathematics I. Prof. A. Shevyakov
  • STAT 812 (01) Computational Statistics. Prof. S. Khan
  • STAT 845 (01) Statistical Methods for Research. Prof. W. Laverty
  • MATH 838 (02) Methods of Applied Mathematics II. Prof. A. Sowa
  • MATH 875 (02) Functional Analysis. Prof. JC Wang
  • MATH 898 (00) Special Topics – Symmetries of Differential Equations. Prof. A. Shevyakov
  • MATH 898 (03) Introduction to Free Probability. Prof. JC Wang
  • STAT 841 (02) Probability Theory. Prof. M. Bickis
  • STAT 846 (02) Special Topics in Probability and Statistics. Prof. M. Bickis
  • MATH 818.3 (01) Special Topics in Applied Mathematics. Numerical Methods for ODE & PDE. Prof. A. Shevyakov
  • MATH 875.3 (01) Functional Analysis. Prof. W. Abou Salem
  • STAT 841.3 (01) Probability Theory. Prof. L. Li
  • STAT 845.3 (01) Statistical Methods for Research. Prof. W. Laverty
  • MATH 818.3 (02) Special Topics in Applied Mathematics. Group Theory for Scientists. Prof. J. Szmigielski
  • MATH 872.3 (02) Special Topics in Pure Mathematics. Operator Spaces. Profs. Y. Choi/E. Samei
  • MATH 872.3 (04) Special Topics in Pure Mathematics. Lie Algebra. Prof. M. Bremner
  • MATH 872.3 (06) Special Topics in Pure Mathematics. Model Theoretic Algebra. Prof. F.-V. Kuhlmann
  • STAT 834.3 (02) Advanced Experimental Design. Prof. S. Khan
  • STAT 850.3 (02) Mathematical Statistics and Inference. Prof. J. Liu
  • STAT 851.3 (02) Linear Models. Prof. W. Laverty
  • MATH 818.3 (01) Special Topics in Applied Mathematics. Methods of Applied Math I. Prof. A. Cheviakov
  • MATH 872.3 (01) Special Topics in Pure Mathematics. Operator Theory. Prof. S. Belinschi
  • MATH 872.3 (03) Special Topics in Pure Mathematics. Profinite Groups. Prof. F.-V. Kuhlmann
  • STAT 845.3 (01) Statistical Methods for Research. Prof. W. Laverty
  • STAT 846.3 (01) Special Topics in Probability & Statistics. Computational Statistics. Prof. L. Li
  • MATH 818.3 (02) Special Topics in Applied Mathematics. Methods of Applied Math II. Prof. A. Sowa
  • MATH 872.3 (02) Special Topics in Pure Mathematics. General Topology. Prof. J. Martin
  • MATH 872.3 (04) Special Topics in Pure Mathematics. Commutative Algebra. Prof. F.-V. Kuhlmann
  • STAT 846.3 (02) Special Topics in Probability & Statistics. Statistical Inference. Prof. M. Bickis
  • STAT 848.3 (02) Multivariate Data Analysis. Prof. W. Laverty
  • STAT 850.3 (02) Mathematical Statistics and Inference. Prof. J. Liu
  • MATH 818.3 (01) Special Topics in Applied Mathematics. Solitons, ODEs, Fluid Mechanics. Prof. G. Patrick.
  • MATH 818.3 (03) Special Topics in Applied Mathematics Methods for Partial Differential Equations I. Prof. A. Cheviakov
  • MATH 875.3 (01) Functional Analysis. Prof. E. Samei
  • STAT 841.3 (01) Probability Theory Profs. M. Bickis/L. Li
  • STAT 845.3 (01) Statistical Methods for Research. Prof. W. Laverty
  • MATH 818.3 (02) Special Topics in Applied Mathematics. Methods for Partial Differential Equations II. Prof. A. Cheviakov.
  • MATH 818.3 (04) Special Topics in Applied Mathematics Nanosystem Modelling. Prof. A. Sowa (Xlist with Math 498.3-to be approved).
  • MATH 898.3 (02) Special Reading course. Prof. E. Samei 
  • MATH 898.3 (04) Special Reading Course: Bounded Analytic Functions. Prof. S. Belinschi
  • STAT 834.3 (02) Advanced Experimental Design. Prof. M. Bickis
  • STAT 848.3 (02) Multivariate Data Analysis. Profs. L. Li/W. Laverty
  • STAT 851.3 (02) Linear Models Prof. M. Bickis (Xlisted with Stats 443.3)