The Ice Age and the Giant Bakken Oil Accumulation

Posted on 2017-09-26 in Events
Oct 2, 2017

Please join us for a special lecture on Monday October 2 at 12:00 noon in rm 165 Geology presented by Bruce Hart, AAPG Distinguished Lecturer:

The Ice Age and the Giant Bakken Oil Accumulation

The USGS estimated (2013) that the Late Devonian to Early Mississippian Bakken Formation holds in excess of 7 billion barrels (~1.1 billion m3) of recoverable oil, making it one of the top 50 largest oilfields in the world. Most of the production comes from shallow-marine sandstones of the Middle Bakken Member that are directly over- and underlain by extremely organic-rich shale source rocks (Upper and Lower Bakken Shale members respectively). Although not oil-productive everywhere, the Middle Bakken forms a relatively sheet-like unit that covers an area of over 200,000 square miles (~520,000 km2) of the intracratonic Williston Basin.

The vertical juxtaposition of shallow-marine reservoir and more distal source rocks over such a large area, without intervening transitional facies, is unusual from a stratigraphic perspective. One possible explanation would require global fluctuations of sea level to drive geologically rapid and extensive shoreline movements in this relatively stable basin. Forced regression associated with falling sea level could explain the lack of transitional facies (e.g., inner shelf) between the distal Lower Bakken Shale and the overlying Middle Bakken (a sharp-based shoreface). Subsequent sea-level rise would have caused rapid and extensive transgression, leading to the observed stratigraphic relationships between the Middle and Upper Bakken members. But what could have caused the changes in sea level?

A considerable body of evidence points to a Late Devonian-Early Mississippian ice age that covered portions of Gondwana (e.g., parts of present-day Brazil) that were situated close to the paleo South Pole. This ice age consisted of more than one glacial/interglacial cycle and was probably triggered by massive removal of CO2 from the atmosphere by land plants and organic-rich shales. Some evidence indicates that at least 100 m of sea-level drop took place during one of the Famennian glaciations, which would have effectively drained the Williston Basin and induced major shoreline progradation. Melting of the ice sheets would have caused transgression and reflooding of the basin and deposition of the Upper Bakken Shale. Other basins around the world record similar evidence for glacioeustacy near the Devonian-Mississippian transition. The glacial/interglacial cycles are expressed differently from basin to basin, reflecting the interplay between fluctuations of global sea level and each basin’s history of subsidence and sediment supply.

http://www.aapg.org/career/training/in-person/distinguished-lecturer/abstract/Articleid/41229/ice-age-and-the-giant-bakken-oil-accumulation