# 2023-2024 Term 2 MATH 116 

JC Wang

University of Saskatchewan
January 28, 2024

## Appendix E Sigma Notation

## Definition

A sequence is a set of objects ordered by positive integers. (These objects are usually numbers.) A sequence is said to be finite if it is finite as a set. A sequence is said to be infinite if it is not a finite sequence.


## Example



## Appendix E Sigma Notation

## Definition

A sequence is a set of objects ordered by positive integers. (These objects are usually numbers.) A sequence is said to be finite if it is finite as a set. A sequence is said to be infinite if it is not a finite sequence.

## Definition

Given a finite sequence $a_{m}, a_{m+1}, \cdots, a_{n}$ (where $m$ and $n$ are positive integers with $m \leq n$ ), we use the following sigma notation for their sum:

$$
\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n}
$$

## Example



## Appendix E Sigma Notation

## Definition

A sequence is a set of objects ordered by positive integers. (These objects are usually numbers.) A sequence is said to be finite if it is finite as a set. A sequence is said to be infinite if it is not a finite sequence.

## Definition

Given a finite sequence $a_{m}, a_{m+1}, \cdots, a_{n}$ (where $m$ and $n$ are positive integers with $m \leq n$ ), we use the following sigma notation for their sum:

$$
\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n}
$$

## Example

$$
\sum_{i=5}^{7} 6=6+6+6, \sum_{i=1}^{4} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}
$$

## The Administration of Math 116

- Course Coordinator: Mohamad Alwan, Dept of Math and Statistics (Course and exam policy, exam delivery methods)
- WebAssign and Lab Coordinator: Amos Lee, Dept of Math and Statistics (Issues related to WebAssign and Canvas, Math 116 gradebook)
- Instructors: Teach math and answer math questions
- Remarks:
- Undergraduate Committee Chairs: Gary Au and Shahedul Khan, Dept of Math and Statistics (Prerequisite requirements and Math career consultation)
- Department Chair: Artur Sowa (final decision maker)


## Rules of Summation

- Let $c$ be a constant that is independent of the index $i$. Then $\sum_{i=m}^{n} c=c \cdot($ the number of terms $)=c(n-m+1)$.
- $\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i}$

- $\sum_{i=m}^{n} c a_{i}=c \sum_{i=m}^{n} a_{i}$


## Theorem

## Theorem

## Theorem

## Theorem

## Rules of Summation

- Let $c$ be a constant that is independent of the index $i$. Then $\sum_{i=m}^{n} c=c \cdot($ the number of terms $)=c(n-m+1)$.
- $\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i}$.
- $\sum_{i=m}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=m}^{n} a_{i}-\sum_{i=m}^{n} b_{i}$
- $\sum_{i=m}^{n} c a_{i}=c \sum_{i=m}^{n} a_{i}$.


## Theorem

## Theorem

## Theorem

## Theorem

## Rules of Summation

- Let $c$ be a constant that is independent of the index $i$. Then $\sum_{i=m}^{n} c=c \cdot($ the number of terms $)=c(n-m+1)$.
- $\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i}$.
- $\sum_{i=m}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=m}^{n} a_{i}-\sum_{i=m}^{n} b_{i}$.


## Theorem

## Theorem

## Theorem

## Theorem

## Rules of Summation

- Let $c$ be a constant that is independent of the index $i$. Then $\sum_{i=m}^{n} c=c \cdot($ the number of terms $)=c(n-m+1)$.
- $\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i}$.
- $\sum_{i=m}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=m}^{n} a_{i}-\sum_{i=m}^{n} b_{i}$.
- $\sum_{i=m}^{n} c a_{i}=c \sum_{i=m}^{n} a_{i}$.


## Theorem

## Theorem

## Theorem

## Theorem

## Rules of Summation

- Let $c$ be a constant that is independent of the index $i$. Then $\sum_{i=m}^{n} c=c \cdot($ the number of terms $)=c(n-m+1)$.
- $\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i}$.
- $\sum_{i=m}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=m}^{n} a_{i}-\sum_{i=m}^{n} b_{i}$.
- $\sum_{i=m}^{n} c a_{i}=c \sum_{i=m}^{n} a_{i}$.


## Theorem

$\sum_{i=1}^{n} i=n(n+1) / 2$.

## Theorem

$\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6$.

## Theorem

$\sum_{i=1}^{n} i^{3}=[n(n+1) / 2]^{2}$.

## Theorem

$\sum_{i=1}^{n} x^{i}=x\left(1-x^{n}\right) /(1-x)$ for $x \neq 1$.

## Example

## Example

Find the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n}\left[\left(\frac{i}{n}\right)^{2}+1\right] .
$$

## Example

Find the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left[\left(\frac{2 i}{n}\right)^{3}+5\left(\frac{2 i}{n}\right)\right]
$$

## 5-1 The Area Problem

## Example

Find the area under the curve $y=x^{2}$ from $x=0$ to $x=1$.

## Definition

Let $f$ be a nonnegative, continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the Riemann sum and the area under the curve $y=f(x), a \leq x \leq b$, by

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x= \begin{cases}\text { upper sum if one chooses } & f\left(x_{i}^{*}\right)=\max _{x_{i-1} \leq x \leq x_{i}} f(x) \\ \text { lower sum if one chooses } & f\left(x_{i}^{*}\right)=\min _{x_{i-1} \leq x \leq x_{i}} f(x)\end{cases}
$$

The area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$.

## 5-1 The Area Problem

## Example

Find the area under the curve $y=x^{2}$ from $x=0$ to $x=1$.

## Definition

Let $f$ be a nonnegative, continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the Riemann sum and the area under the curve $y=f(x), a \leq x \leq b$, by

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x= \begin{cases}\text { upper sum if one chooses } & f\left(x_{i}^{*}\right)=\max _{x_{i-1} \leq x \leq x_{i}} f(x) \\ \text { lower sum if one chooses } & f\left(x_{i}^{*}\right)=\min _{x_{i-1} \leq x \leq x_{i}} f(x)\end{cases}
$$

$$
\text { The area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

## 5-1 The Distance Problem

## Definition

An object moves with continuous velocity $f(t)$, where $a \leq t \leq b$ and $f(t) \geq 0$. Let

$$
\Delta t=\frac{b-a}{n}, \quad t_{i}=a+i \Delta t \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $t_{i}^{*}$ from the $i$-th closed subinterval $\left[t_{i-1}, t_{i}\right]$. Define the distance traveled during the time interval $[a, b]$ by

The distance $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t$.

## 5-2 The Definite Integral

## Definition

Let $f$ be a continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the definite integral (or simply integration or integral) of $f$ over $[a, b]$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- $f$ not required to be positive; the sample point $x_{i}^{*}$ can be arbitrary, for example, the mid-point $x_{i}^{*}=\left(x_{i-1}+x_{i}\right) / 2$.
- Call $f(x)$ the integrand; $a, b$ the limits of integration.
- Could use any letter in place of $x$ without changing the value of the integral.


## 5-2 The Definite Integral

## Definition

Let $f$ be a continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the definite integral (or simply integration or integral) of $f$ over $[a, b]$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- $f$ not required to be positive; the sample point $x_{i}^{*}$ can be arbitrary, for example, the mid-point $x_{i}^{*}=\left(x_{i-1}+x_{i}\right) / 2$.
- Call $f(x)$ the integrand; $a, b$ the limits of integration.
- Could use any letter in place of $x$ without changing the value of the integral.


## 5-2 The Definite Integral

## Definition

Let $f$ be a continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the definite integral (or simply integration or integral) of $f$ over $[a, b]$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- $f$ not required to be positive; the sample point $x_{i}^{*}$ can be arbitrary, for example, the mid-point $x_{i}^{*}=\left(x_{i-1}+x_{i}\right) / 2$.
- Call $f(x)$ the integrand; $a, b$ the limits of integration.
- Could use any letter in place of $x$ without changing the value of the integral.


## 5-2 The Definite Integral

## Definition

Let $f$ be a continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the definite integral (or simply integration or integral) of $f$ over $[a, b]$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- When $f \geq 0$ on $[a, b]$,

$$
\int_{a}^{b} f(x) d x=\text { area under the curve } y=f(x), a \leq x \leq b
$$

## 5-2 The Definite Integral

## Definition

Let $f$ be a continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the definite integral (or simply integration or integral) of $f$ over $[a, b]$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- When $f \leq 0$ on $[a, b]$,

$$
\int_{a}^{b} f(x) d x=- \text { area under the curve } y=f(x), a \leq x \leq b
$$

## 5-2 The Definite Integral

## Definition

Let $f$ be a continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the definite integral (or simply integration or integral) of $f$ over $[a, b]$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

## Example

Express $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}^{3}+x_{i} \sin x_{i}\right) \Delta x$ as an integral on the interval $[0, \pi]$.

## 5-2 The Definite Integral

## Definition

Let $f$ be a continuous function on an interval $[a, b]$. Let

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad \text { for } i=0,1,2, \cdots, n
$$

Choose a point $x_{i}^{*}$ from the $i$-th closed subinterval $\left[x_{i-1}, x_{i}\right]$. Define the definite integral (or simply integration or integral) of $f$ over $[a, b]$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

## Example

Approximate the definite integral $\int_{0}^{8} \sin \sqrt{x} d x$ using Riemann sums in the case of $n=4$.

## 5-2 The Definite Integral

- $c$ constant $\Rightarrow \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ and $\int_{a}^{b} c d x=c(b-a)$
- $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
- If $a<c<b$ then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{a}^{a} f(x) d x=0$
- When $f$ takes both positive and negative values, then

$$
\int_{a}^{b} f(x) d x=\text { the net area of } f \text { over }[a, b] .
$$

## Example

Find the value of

$$
\int_{0}^{1}\left(\sqrt{1-x^{2}}-6 x\right) d x
$$

## 5-2 The Definite Integral

- $c$ constant $\Rightarrow \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ and $\int_{a}^{b} c d x=c(b-a)$
- $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
- If $a<c<b$ then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{a}^{a} f(x) d x=0$
- When $f$ takes both positive and negative values, then

$$
\int_{a}^{b} f(x) d x=\text { the net area of } f \text { over }[a, b] \text {. }
$$

## Example

Find the value of


## 5-2 The Definite Integral

- $c$ constant $\Rightarrow \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ and $\int_{a}^{b} c d x=c(b-a)$
- $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
- If $a<c<b$ then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- When $f$ takes both positive and negative values, then
$f(x) d x=$ the net area of $f$ over $[a, b]$.


## Example

Find the value of


## 5-2 The Definite Integral

- $c$ constant $\Rightarrow \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ and $\int_{a}^{b} c d x=c(b-a)$
- $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
- If $a<c<b$ then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{a}^{a} f(x) d x=0$
- When $f$ takes both positive and negative values, then
$f(x) d x=$ the net area of $f$ over $[a, b]$.


## 5-2 The Definite Integral

- $c$ constant $\Rightarrow \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ and $\int_{a}^{b} c d x=c(b-a)$
- $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
- If $a<c<b$ then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{a}^{a} f(x) d x=0$
- When $f$ takes both positive and negative values, then

$$
\int_{a}^{b} f(x) d x=\text { the net area of } f \text { over }[a, b]
$$

## 5-2 The Definite Integral

- $c$ constant $\Rightarrow \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ and $\int_{a}^{b} c d x=c(b-a)$
- $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
- If $a<c<b$ then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{a}^{a} f(x) d x=0$
- When $f$ takes both positive and negative values, then

$$
\int_{a}^{b} f(x) d x=\text { the net area of } f \text { over }[a, b]
$$

## Example

Find the value of

$$
\int_{0}^{1}\left(\sqrt{1-x^{2}}-6 x\right) d x
$$

## 5-2 The Definite Integral

- $f \geq 0$ on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq 0$
- $f \geq g$ on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
- $m \leq f \leq M$ on $[a, b] \Rightarrow m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$


## 5-2 The Definite Integral

- $f \geq 0$ on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq 0$
- $f \geq g$ on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
- $m \leq f \leq M$ on $[a, b] \Rightarrow m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$


## 5-2 The Definite Integral

- $f \geq 0$ on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq 0$
- $f \geq g$ on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
- $m \leq f \leq M$ on $[a, b] \Rightarrow m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$


## 5-3 The Fundamental Theorem of Calculus (FTC)

## Theorem

Assume that $f$ is continuous on $[a, b]$.
(1) The function

$$
g(x)=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on $(a, b)$, and

$$
g^{\prime}(x)=f(x), \quad a<x<b
$$

(3) The value of the integral

$$
f(x) d x=F(b)-F(a)
$$

## 5-3 The Fundamental Theorem of Calculus (FTC)

## Theorem

Assume that $f$ is continuous on $[a, b]$.
(1) The function

$$
g(x)=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on $(a, b)$, and

$$
g^{\prime}(x)=f(x), \quad a<x<b
$$

(2) The value of the integral

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F$ is any anti-derivative of $f$, that is, a function $F$ such that $F^{\prime}=f$.

## Examples

## Example

Find the derivative of

$$
\int_{0}^{x} \sqrt{1+t^{2}} d t
$$

## Example

Find the derivative of

$$
\int_{0}^{x^{4}} \sec t d t
$$

## Example

Evaluate

$$
\int_{3}^{6} \frac{1}{x} d x
$$

## Announcement

## Fact

The two midterm tests and the final exam this term for Math 116 are changed to online exams via WebAssign that students can write from wherever they reside. Mr. Amos Lee will announce the details on Canvas.

## Examples

## Example

What's wrong with the calculation?

$$
\int_{-1}^{3} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{x=-1} ^{x=3}=-\frac{1}{3}-1<0
$$

## Example

Find the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n}\left[\left(\frac{i}{n}\right)^{2}+1\right] .
$$

## Example

Find the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left[\left(\frac{2 i}{n}\right)^{3}+5\left(\frac{2 i}{n}\right)\right]
$$

## 5-4 The Indefinite Integral

## Definition

The notation

$$
F(x)=\int f(x) d x \text { means } F^{\prime}(x)=f(x) .
$$

## Example



## 5-4 The Indefinite Integral

## Definition

The notation

$$
F(x)=\int f(x) d x \text { means } F^{\prime}(x)=f(x) .
$$

## Example

$$
\begin{gathered}
\int x^{2} d x=\frac{x^{3}}{3}+\text { constant } \\
\int \sin x d x=-\cos x+\text { constant }
\end{gathered}
$$

## 5-4 The Indefinite Integral

## Examples

(The Table of Indefinite Integrals Part I)

$$
\begin{gathered}
\int x^{n} d x=\frac{x^{n+1}}{n+1}+\text { constant } \quad(n \neq-1) \\
\int \frac{1}{x} d x=\ln |x|+\text { constant } \\
\int e^{x} d x=e^{x}+\text { constant }, \quad \int b^{x} d x=\frac{b^{x}}{\ln b}+\text { constant }
\end{gathered}
$$

## 5-4 The Indefinite Integral

## Examples

(The Table of Indefinite Integrals Part II)

$$
\int \sec x \tan x d x=\sec x+\text { constant }, \quad \int \csc x \cot x d x=-\csc x+\text { constant }
$$

$$
\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+\text { constant }, \quad \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+\text { constant }
$$

$$
\begin{aligned}
& \int \sin x d x=-\cos x+\text { constant }, \quad \int \cos x d x=\sin x+\text { constant } \\
& \int \sec ^{2} x d x=\tan x+\text { constant }, \quad \int \csc ^{2} x d x=-\cot x+\text { constant }
\end{aligned}
$$

## 5-4 The Indefinite Integral

## Example

Define

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

Then we have

$$
\int \sinh x d x=\cosh x+\text { constant }, \quad \int \cosh x d x=\sinh x+\text { constant }
$$

## Example

Compute


## Example

## 5-4 The Indefinite Integral

## Example

Define

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

Then we have

$$
\int \sinh x d x=\cosh x+\text { constant }, \quad \int \cosh x d x=\sinh x+\text { constant }
$$

## Example

Compute

$$
\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta
$$

## Example

Evaluate

## 5-4 The Indefinite Integral

## Example

Define

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

Then we have

$$
\int \sinh x d x=\cosh x+\text { constant }, \quad \int \cosh x d x=\sinh x+\text { constant }
$$

## Example

Compute

$$
\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta
$$

Example
Evaluate

$$
\int_{0}^{2} 2 x^{3}-6 x+\frac{3}{1+x^{2}} d x
$$

## 5-4 The Indefinite Integral

Example
Evaluate

$$
\int_{1}^{9} \frac{2 t^{2}+t^{2} \sqrt{t}-1}{t^{2}} d t
$$

## 5-4 The Indefinite Integral: Applications

## Theorem

(Net Change Theorem) If $F$ is differentiable on some open interval that contains [ $a, b$ ], then

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) .
$$

This is a reformulation of the FTC.


## 5-4 The Indefinite Integral: Applications

## Theorem

(Net Change Theorem) If $F$ is differentiable on some open interval that contains [a, b], then

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) .
$$

This is a reformulation of the FTC.

## Example

An object moves alone the real line with position $s(t)$, then its velocity is $v(t)=s^{\prime}(t)$, so
displacement during the time period $\left[t_{1}, t_{2}\right]=\int_{t_{1}}^{t_{2}} v(t) d t=s\left(t_{2}\right)-s\left(t_{1}\right)$;
distance traveled during the time period $\left[t_{1}, t_{2}\right]=\int_{t_{1}}^{t_{2}}|v(t)| d t$.

## 5-4 The Indefinite Integral: Applications

## Example

A particle moves on the real line with $v(t)=t^{2}-t-6$.
(1) Find the displacement of the particle during the time period $1 \leq t \leq 4$.
(2) Find the distance traveled during this time period.

## 5-5 The Substitution Rule

## Example

$\int 2 x \sqrt{1+x^{2}} d x$

## Fact

(The Substitution Rule) If $u=g(x)$ is differentiable and its range is an interval I on which $f$ is continuous, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

## Example

$\int x^{3} \cos \left(x^{4}+2\right) d x$

## Example



## 5-5 The Substitution Rule

## Example

$\int 2 x \sqrt{1+x^{2}} d x$

## Fact

(The Substitution Rule) If $u=g(x)$ is differentiable and its range is an interval I on which $f$ is continuous, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Example
$\int x^{3} \cos \left(x^{4}+2\right) d x$
Example
$\int \sqrt{2 x+1} d x$

## 5-5 The Substitution Rule

## Example

$\int \frac{x}{\sqrt{1-4 x^{2}}} d x$
Example
$\int e^{5 x} d x$
Example
$\int x^{5} \sqrt{x^{2}+1} d x ; u=x^{2}+1$
Example
$\int \tan x d x$
Example
$\int_{1}^{2} \frac{1}{(3-5 x)^{2}} d x$

## 5-5 The Substitution Rule

## Example

$\int_{1}^{e} \frac{\ln x}{x} d x$

## Fact

(Symmetry) Suppose $f$ is continuous on $[-a, a]$.
(1) If $f(-x)=f(x)$ for all $x$ then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
(2) If $f(-x)=-f(x)$ for all $x$, then $\int_{-a}^{a} f(x) d x=0$.

## Example

$\int_{-2}^{2} x^{6}+1 d x$

## Example

$\int_{-1}^{1} \frac{\tan x}{1-x^{2}+x^{4}} d x=0$.

## 5-5 The Substitution Rule

## Example

$\int_{1}^{e} \frac{\ln x}{x} d x$

## Fact

(Symmetry) Suppose $f$ is continuous on $[-a, a]$.
(1) If $f(-x)=f(x)$ for all $x$, then $\int_{-\mathrm{a}}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
(2) If $f(-x)=-f(x)$ for all $x$, then $\int_{-a}^{a} f(x) d x=0$.

## Example

$\int_{-2}^{2} x^{6}+1 d x$

## Example

$\int_{-1}^{1} \frac{\tan x}{1+x^{2}+x^{4}} d x=0$.

## 6-1 The Area Between Curves

## Fact

The area bounded by the continuous curves $y=f(x), y=g(x)$, and the lines $x=a, x=b$ is given by

$$
\text { area }=\int_{a}^{b}|f(x)-g(x)| d x
$$

## Example

Find the area of the region bounded by $y=e^{x}, y=x, x=0, x=1$.


## 6-1 The Area Between Curves

## Fact

The area bounded by the continuous curves $y=f(x), y=g(x)$, and the lines $x=a, x=b$ is given by

$$
\text { area }=\int_{a}^{b}|f(x)-g(x)| d x
$$

## Example

Find the area of the region bounded by $y=e^{x}, y=x, x=0, x=1$.

## Example

Find the area enclosed by parabolas $y=x^{2}$ and $y=2 x-x^{2}$.


## 6-1 The Area Between Curves

## Fact

The area bounded by the continuous curves $y=f(x), y=g(x)$, and the lines $x=a, x=b$ is given by

$$
\text { area }=\int_{a}^{b}|f(x)-g(x)| d x
$$

## Example

Find the area of the region bounded by $y=e^{x}, y=x, x=0, x=1$.

## Example

Find the area enclosed by parabolas $y=x^{2}$ and $y=2 x-x^{2}$.

## Example

Find the area bounded by $y=\sin x, y=\cos x, x=0, x=\pi / 2$.

## 6-1 The Area Between Curves

## Fact

Some regions are best treated by regarding $x$ as a function in $y$. The area bounded by the continuous curves $x=f(y), x=g(y)$, and the lines $y=c$, $y=d$ is given by

$$
\text { area }=\int_{c}^{d}|f(y)-g(y)| d y .
$$

## Example

Find the area enclosed by $y=x-1$ and $y^{2}=2 x+6$.

## 6-2 Volumes

## Fact

Let $S$ be a solid that lies between $x=a$ and $x=b$. If the cross-sectional area of $S$ through $x$ and perpendicular to the $x$-axis is a continuous function $A(x)$, then

$$
\text { volume of } S=\int_{a}^{b} A(x) d x
$$

## Example

Find the volume of a ball with radius $r$.

$$
A(x)=\pi y^{2}=\pi\left(r^{2}-x^{2}\right), \quad-r \leq x \leq r .
$$

## 6-2 Volumes

## Fact

Let $S$ be a solid that lies between $x=a$ and $x=b$. If the cross-sectional area of $S$ through $x$ and perpendicular to the $x$-axis is a continuous function $A(x)$, then

$$
\text { volume of } S=\int_{a}^{b} A(x) d x
$$

## Example

Find the volume of the solid obtained by rotating about the $x$-axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .

$$
A(x)=\pi(\sqrt{x})^{2}, \quad 0 \leq x \leq 1
$$

## 6-2 Volumes

## Fact

Let $S$ be a solid that lies between $y=c$ and $y=d$. If the cross-sectional area of $S$ through $y$ and perpendicular to the $y$-axis is a continuous function $A(y)$, then

$$
\text { volume of } S=\int_{c}^{d} A(y) d y
$$

## Example

Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=8$, and $x=0$ about $y$-axis.

$$
A(y)=\pi x^{2}=\pi(\sqrt[3]{y})^{2}, \quad 0 \leq y \leq 8 .
$$

## 6-2 Volumes

## Example

The region $R$ enclosed by $y=x$ and $y=x^{2}$ is rotated about the $x$-axis. Find the volume of the resulting solid.

$$
A(x)=\pi x^{2}-\pi\left(x^{2}\right)^{2}, \quad 0 \leq x \leq 1 .
$$

## Example

Rotate the same region $R$ about the horizontal line $y=2$ and find the volume of the solid of revolution whose cross-section is a washer with the inner radius $2-x$ and the outer radius $2-x^{2}$.

## 6-2 Volumes

## Example

The region $R$ enclosed by $y=x$ and $y=x^{2}$ is rotated about the $x$-axis. Find the volume of the resulting solid.

$$
A(x)=\pi x^{2}-\pi\left(x^{2}\right)^{2}, \quad 0 \leq x \leq 1
$$

## Example

Rotate the same region $R$ about the horizontal line $y=2$ and find the volume of the solid of revolution whose cross-section is a washer with the inner radius $2-x$ and the outer radius $2-x^{2}$.

## 6-2 Volumes

## Example

The same region $R$ enclosed by $y=x$ and $y=x^{2}$ is now rotated about the vertical line $x=-1$. Find the volume of the solid of revolution whose cross-section is now a washer with the inner radius $1+y$ and the outer radius $1+\sqrt{y}$.

## 6-2 Volumes

## Example

A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane is perpendicular to the axis of the cylinder, while the other intersects the first at an angle of $30^{\circ}$ along a diameter of the cylinder. Find the volume of the wedge.
Hint: Place the $x$-axis along the diameter where the planes meet and place the $y$-axis on the first plane, then the base of the solid is a semicircle $y=\sqrt{16-x^{2}},-4 \leq x \leq 4$. Then the cross-section perpendicular to the $x$-axis at $x$ is a triangle whose base is $y=\sqrt{16-x^{2}}$ and the height $y \tan 30^{\circ}$. Thus,

$$
A(x)=\frac{16-x^{2}}{2 \sqrt{3}}, \quad-4 \leq x \leq 4
$$

## 6-3 Volumes by Cylindrical Shells

## Fact

Let $S$ be the solid obtained by rotating about the $y$-axis the region bounded by $y=f(x)$ where $f(x) \geq 0, y=0, x=a, x=b$, where $b>a \geq 0$. Then

$$
\text { volume of } S=\int_{a}^{b} 2 \pi x f(x) d x
$$



## 6-3 Volumes by Cylindrical Shells

## Fact

Let $S$ be the solid obtained by rotating about the $y$-axis the region bounded by $y=f(x)$ where $f(x) \geq 0, y=0, x=a, x=b$, where $b>a \geq 0$. Then

$$
\text { volume of } S=\int_{a}^{b} 2 \pi x f(x) d x
$$

## Example

Find the volume of $S$ where the region is bounded by $y=f(x)=2 x^{2}-x^{3}$ and $y=0$.

$$
\text { volume of } S=\int_{a}^{b} \underbrace{2 \pi x}_{\text {circumference }} \underbrace{f(x)}_{\text {height }} \underbrace{d x}_{\text {thickness }}
$$

## 6-3 Volumes by Cylindrical Shells

## Fact

Let $S$ be the solid obtained by rotating about the $y$-axis the region bounded by $y=f(x)$ where $f(x) \geq 0, y=0, x=a, x=b$, where $b>a \geq 0$. Then

$$
\text { volume of } S=\int_{a}^{b} 2 \pi x f(x) d x
$$

## Example

Find the volume of the solid obtained by rotating about the $y$-axis the region between $y=x$ and $y=x^{2}$.

$$
\text { height } f(x)=x-x^{2}
$$

## 6-3 Volumes by Cylindrical Shells

## Fact

Let $S$ be the solid obtained by rotating about the $x$-axis the region bounded by $x=g(y)$ where $g(y) \geq 0, x=0, y=c, y=d$, where $d>c \geq 0$. Then

$$
\text { volume of } S=\int_{c}^{d} 2 \pi y g(y) d y
$$

## Example

Find the volume of the solid obtained by rotating about the $x$-axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .

$$
\text { radius }=y, \text { circumference }=2 \pi y, \text { height }=1-y^{2}
$$

$$
\text { volume }=\int_{0}^{1}(2 \pi y)\left(1-y^{2}\right) d y
$$

## 6-3 Volumes by Cylindrical Shells

## Example

Find the volume of the solid obtained by rotating the region under the curve $y=x-x^{2}$ and $y=0$ about the line $x=2$.

$$
\text { radius }=2-x \text {, circumference }=2 \pi(2-x), \text { height }=x-x^{2}
$$

$$
\text { volume }=\int_{0}^{1} 2 \pi(2-x)\left(x-x^{2}\right) d x
$$

## 6-4 Work

## Example

An object moves along the $x$-axis in the positive direction. A each point $x$ a force $f(x)$ acts continuously at the object. The work done in moving the object from $x=a$ to $x=b$ is

$$
\text { work }=\int_{a}^{b} f(x) d x
$$

Unit of work: newton-meter (J) or foot-pound (ft-lb).

## 6-4 Work

## Example

A force of 40 (newton) is needed to hold a spring that has been stretched from its natural length of $10(\mathrm{~cm})$ to a length of 15 . How much work is done in stretching the spring from 15 to 18 ?

$$
f(x)=k x \quad \text { Hooke's Law }
$$

The amount stretched is $15-10=5 \mathrm{~cm}=0.05 \mathrm{~m}$.
$f(0.05)=40 \Rightarrow k=800$.

$$
W=\int_{0.05}^{0.08} 800 x d x=1.56 \mathrm{~J}
$$

## 6-4 Work

## Example

A 200 ( lb ) cable is 100 (ft) long and hangs vertically from the top of a building. Set the top of the building to be the origin and the $x$-axis pointing downward. Partition the cable into $n$ small pieces of uniform length $\Delta x$, and let $x_{i}^{*}$ denote a point in the $i$ th such small piece. Assume the cable is made of uniform density so that it weighs 2 per foot ( $\mathrm{lb} / \mathrm{ft}$ ), so the weight of the $i$ th part is $2 \Delta x(\mathrm{lb})$.


Overall, the work is needed to lift the cable to the top of the building is given by

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 x_{i}^{*} \Delta x=\int_{0}^{100} 2 x d x .
$$

## 6-4 Work

## Example

A water tank has the shape of an inverted circular cone with height 10 (m) and base radius $4(\mathrm{~m})$. It is filled with water to a height of $8(\mathrm{~m})$. Find the work required to empty tank by pumping all of the water to the top of the tank. (The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)
Hint: Measure depth from the top of the tank by placing $x=0$ at there, and partition the (vertical) interval $[2,10]$ into $n$ subintervals and choose $x_{i}^{*}$ from the $i$-th one, so that the water is divided into $n$ layers. Then the $i$-th layer is approximated by a circular cylinder with radius $r_{i}$ and height $\Delta x=8 / n$, where

$$
\frac{r_{i}}{10-x_{i}^{*}}=\frac{4}{10} . \Rightarrow \text { volume }=\frac{4 \pi}{25}\left(10-x_{i}^{*}\right) \Delta x .
$$

## 6-4 Work

## Example

(Water tank problem continued) The density of water is $1000\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$, the gravitational constant $g=9.8$, and so mass $m_{i}=$ density $\times$ volume $=160 \pi\left(10-x_{i}^{*}\right) \Delta x$. The force $F_{i}$ is $9.8 m_{i}$, and the work done for the $i$-th part is $W_{i}=F_{i} x_{i}^{*}$.

$$
W=\lim _{n \rightarrow \infty} W_{i}=\int_{2}^{10} 1568 \pi x(10-x)^{2} d x
$$

## 6-5 Average Value of a Function

## Definition

The average value of a function $f$ on $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

## Theorem

(Mean Value Theorem) If $f$ is continuous on $[a, b]$, then there exists a number $c$ in $[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

## Example

Find such : $c$ for $f(x)=1+x^{2}$ on $[-1,2]$

## 6-5 Average Value of a Function

## Definition

The average value of a function $f$ on $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

## Theorem

(Mean Value Theorem) If $f$ is continuous on $[a, b]$, then there exists a number $c$ in $[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

## Example

Find such a $c$ for $f(x)=1+x^{2}$ on $[-1,2]$.

## 7-1 Integration by Parts

## Definition

(Integration by Parts)

$$
\int u d v=u v-\int v d u
$$

## Example

Find $\int x \sin x d x$.

## Example

Find $\int \ln x d x$.

## Example

Find $\int t^{2} e^{t} d t$.

## Example

Find $\int e^{x} \sin x d x$.

## 7-1 Integration by Parts

## Definition

(Integration by Parts)

$$
\int u d v=u v-\int v d u
$$

## Example

Find $\int_{0}^{1} \tan ^{-1} x d x . u=\tan ^{-1} x, d v=d x$

## Example

$\int \sin ^{n} x d x=-\frac{1}{n} \cos x \sin ^{n-1} x+\frac{n-1}{n} \int \sin ^{n-2} x d x$.

## Example

$\int \cos ^{n} x d x=\frac{1}{n} \sin x \cos ^{n-1} x+\frac{n-1}{n} \int \cos ^{n-2} x d x$.

## 7-2 Trig Integrals

## Example

Find $\int \cos ^{3} x d x \cdot \cos ^{2} x+\sin ^{2} x=1$

## Example

Find $\int \sin ^{5} x \cos ^{2} x d x$.

## Example

Find $\int_{0}^{\pi} \sin ^{2} x d x \sin ^{2} x=(1-\cos 2 x) / 2$

## Example

Find $\int \sin ^{4} x d x$. Use the reduction formula.

## 7-2 Trig Integrals

## Fact

To evaluate $\int \sin ^{m} x \cos ^{n} x d x$ :
(1) If $n$ is odd, separate one $\cos x$ out and use $\cos ^{2} x=1-\sin ^{2} x$.
(2) If $m$ is odd, separate one $\sin x$ out and use $\cos ^{2} x=1-\sin ^{2} x$.
(3) If both $m, n$ are even, use

## Example

## 7-2 Trig Integrals

## Fact

To evaluate $\int \sin ^{m} x \cos ^{n} x d x$ :
(1) If $n$ is odd, separate one $\cos x$ out and use $\cos ^{2} x=1-\sin ^{2} x$.
(2) If $m$ is odd, separate one $\sin x$ out and use $\cos ^{2} x=1-\sin ^{2} x$.
© If both $m, n$ are even, use

## Example

$\int \sin ^{4} x \cos ^{4} x d x$

## 7-2 Trig Integrals

## Fact

To evaluate $\int \sin ^{m} x \cos ^{n} x d x$ :
(1) If $n$ is odd, separate one $\cos x$ out and use $\cos ^{2} x=1-\sin ^{2} x$.
(2) If $m$ is odd, separate one $\sin x$ out and use $\cos ^{2} x=1-\sin ^{2} x$.
(3) If both $m, n$ are even, use

$$
\sin ^{2} x=\frac{1-\cos 2 x}{2}, \cos ^{2} x=\frac{1+\cos 2 x}{2}, \sin x \cos x=\frac{\sin 2 x}{2} .
$$

## Example

## 7-2 Trig Integrals

## Fact

To evaluate $\int \sin ^{m} x \cos ^{n} x d x$ :
(1) If $n$ is odd, separate one $\cos x$ out and use $\cos ^{2} x=1-\sin ^{2} x$.
(2) If $m$ is odd, separate one $\sin x$ out and use $\cos ^{2} x=1-\sin ^{2} x$.
(3) If both $m, n$ are even, use

$$
\sin ^{2} x=\frac{1-\cos 2 x}{2}, \cos ^{2} x=\frac{1+\cos 2 x}{2}, \sin x \cos x=\frac{\sin 2 x}{2} .
$$

## Example

$\int \sin ^{4} x \cos ^{4} x d x$

## 7-2 Trig Integrals

## Example

Find $\int \tan ^{6} x \sec ^{4} x d x \cdot \sec ^{2} x=1+\tan ^{2} x, u=\tan x, d u=\sec ^{2} x d x$

## Example

Find $\int \tan ^{5} x \sec ^{7} x d x . u=\sec x, d u=\sec x \tan x d x$

## Example

Find $\int \tan x d x=\ln |\sec x|+C, \tan x=\frac{\sin x}{\cos x}$

## Example

Find $\int \sec x d x=\ln |\sec x+\tan x|+C$

## 7-2 Trig Integrals

## Fact

To evaluate $\int \tan ^{m} x \sec ^{n} x d x$ :
(1) If $n$ is even, separate one $\sec ^{2} x$ out and use $\sec ^{2} x=1+\tan ^{2} x$.
(C) If $m$ is odd, separate one $\sec x \tan x$ out and use $\tan ^{2} x=\sec ^{2} x-1$

## Example

$\int \tan ^{3} x d x$ use $\tan ^{2} x=\sec ^{2} x-1$ first then follow (1).

## Example

$\int \sec ^{3} x d x$. use integration by parts: $u=\sec x, d v=\sec ^{2} x d x$


## 7-2 Trig Integrals

## Fact

To evaluate $\int \tan ^{m} x \sec ^{n} x d x$ :
(1) If $n$ is even, separate one $\sec ^{2} x$ out and use $\sec ^{2} x=1+\tan ^{2} x$.
(2) If $m$ is odd, separate one $\sec x \tan x$ out and use $\tan ^{2} x=\sec ^{2} x-1$.

## Example

$\int \tan ^{3} x d x$; use $\tan ^{2} x=\sec ^{2} x-1$ first then follow (1).

## Example

use integration by parts: $u=\sec x, d v=\sec ^{2} x d x$

## 7-2 Trig Integrals

## Fact

To evaluate $\int \tan ^{m} x \sec ^{n} x d x$ :
(1) If $n$ is even, separate one $\sec ^{2} x$ out and use $\sec ^{2} x=1+\tan ^{2} x$.
(2) If $m$ is odd, separate one $\sec x \tan x$ out and use $\tan ^{2} x=\sec ^{2} x-1$.

## Example

$\int \tan ^{3} x d x$; use $\tan ^{2} x=\sec ^{2} x-1$ first then follow (1).

## Example

$\int \sec ^{3} x d x$; use integration by parts: $u=\sec x, d v=\sec ^{2} x d x$
$-\int \tan ^{2} x \sec x d x=-\int\left(\sec ^{2} x-1\right) \sec x d x="-" \int \sec ^{3} x d x+\int \sec x d x$

## 7-2 Trig Integrals

## Fact

Product-Sum Formulas
(1) $\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$
(2) $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
(3) $\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$

## Example

## 7-2 Trig Integrals

## Fact

Product-Sum Formulas
(1) $\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$
(2) $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
(3) $\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$

## Example

$\int \sin 4 x \cos 5 x d x$

## 7-3 Trig Substitution

## Fact

Table of Trig Substitutions
(1) $\sqrt{a^{2}-x^{2}} \Rightarrow x=a \sin \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, 1-\sin ^{2} \theta=\cos ^{2} \theta$.
(2) $\sqrt{a^{2}+x^{2}} \Rightarrow x=a \tan \theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2}, 1+\tan ^{2} \theta=\sec ^{2} \theta$.
(3) $\sqrt{x^{2}-a^{2}} \Rightarrow x=a \sec \theta, 0 \leq \theta<\frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}, \sec ^{2} \theta-1=\tan ^{2} \theta$.

## 7-3 Trig Substitution

## Fact

## Table of Trig Substitutions

(1) $\sqrt{a^{2}-x^{2}} \Rightarrow x=a \sin \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, 1-\sin ^{2} \theta=\cos ^{2} \theta$.
(2) $\sqrt{a^{2}+x^{2}} \Rightarrow x=a \tan \theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2}, 1+\tan ^{2} \theta=\sec ^{2} \theta$.
(3) $\sqrt{x^{2}-a^{2}} \Rightarrow x=a \sec \theta, 0 \leq \theta<\frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}, \sec ^{2} \theta-1=\tan ^{2} \theta$.

## Example

$\int \frac{\sqrt{9-x^{2}}}{x^{2}} d x, \int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x, \int \frac{x}{\sqrt{x^{2}+4}} d x, \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x$.

## 7-3 Trig Substitution

## Fact

## Table of Trig Substitutions

(1) $\sqrt{a^{2}-x^{2}} \Rightarrow x=a \sin \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, 1-\sin ^{2} \theta=\cos ^{2} \theta$.
(2) $\sqrt{a^{2}+x^{2}} \Rightarrow x=a \tan \theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2}, 1+\tan ^{2} \theta=\sec ^{2} \theta$.
(3) $\sqrt{x^{2}-a^{2}} \Rightarrow x=a \sec \theta, 0 \leq \theta<\frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}, \sec ^{2} \theta-1=\tan ^{2} \theta$.

## Example

$\int_{0}^{3 \sqrt{3} / 2} \frac{x^{3}}{\left(4 x^{2}+9\right)^{3 / 2}} d x, \int \frac{x}{\sqrt{3-2 x-x^{2}}} d x$

## 7-4 Partial Fractions (Long Division Reduction)

## Fact

Long Division Algorithm

$$
\frac{f(x)}{g(x)}=q(x)+\frac{r(x)}{g(x)}
$$

## Example

$$
\int \frac{x^{3}+x}{x-1} d x
$$

## 7-4 Partial Fractions (Distinct Linear Factors)

## Fact

If the denominator $g(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \cdots\left(a_{k} x+b_{k}\right)$ where no factor is repeated, then

$$
\frac{f(x)}{g(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{k}}{a_{k} x+b_{k}}
$$

## Example

$$
\begin{gathered}
\int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x \\
\int \frac{1}{x^{2}-a^{2}} d x
\end{gathered}
$$

## 7-4 Partial Fractions (Repeated Linear Factors)

## Fact

If some factors are repeated, say, $\left(a_{1} x+b_{1}\right)^{r}$, then one replaces

$$
\frac{A_{1}}{a_{1} x+b_{1}}
$$

by

$$
\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\cdots+\frac{A_{r}}{\left(a_{1} x+b_{1}\right)^{r}},
$$

and do this for each repeated factor.

## Example

$$
\begin{aligned}
\frac{x^{3}-x+1}{x^{2}(x-1)^{3}}= & \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}+\frac{D}{(x-1)^{2}}+\frac{E}{(x-1)^{3}} \\
& \int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x
\end{aligned}
$$

## 7-4 Partial Fractions (Distinct Irreducible Quadratic

 Factors)
## Fact

If there is a irreducible quadratic factor $a x^{2}+b x+c$, then in addition to the partial fractions in previous cases, one adds

$$
\frac{A x+B}{a x^{2}+b x+c} .
$$

## Example

$$
\begin{gathered}
\frac{x}{(x-2)\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{x^{2}+4} \\
\text { Note that } \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C
\end{gathered}
$$

## 7-4 Partial Fractions (Repeated Irreducible Quadratic

 Factors)
## Fact

If there is a repeated irreducible quadratic factor $\left(a x^{2}+b x+c\right)^{r}$, then in addition to the partial fractions in previous cases, one replaces

$$
\frac{A x+B}{a x^{2}+b x+c}
$$

by

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}} .
$$

## Example

$$
\begin{gathered}
\frac{1-x+2 x^{2}-x^{3}}{x\left(x^{2}+1\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}} \\
\int \frac{\sqrt{x+4}}{x} d x ; u=\sqrt{x+4}
\end{gathered}
$$

## 7-5 Integration Strategy

## Example

$$
\int \frac{\tan ^{3} x}{\cos ^{3} x} d x ; \frac{\tan ^{3} x}{\cos ^{3} x}=\underbrace{\tan ^{3} x \sec ^{3} x}_{u=\sec x}=\underbrace{\frac{\sin ^{3} x}{\cos ^{6} x}}_{u=\cos x}
$$

## Example

$$
\int e^{\sqrt{x}} d x=2 \int u e^{u} d u
$$

## Example



## 7-5 Integration Strategy

## Example

$$
\int \frac{\tan ^{3} x}{\cos ^{3} x} d x ; \frac{\tan ^{3} x}{\cos ^{3} x}=\underbrace{\tan ^{3} x \sec ^{3} x}_{u=\sec x}=\underbrace{\frac{\sin ^{3} x}{\cos ^{6} x}}_{u=\cos x}
$$

## Example

$$
\int e^{\sqrt{x}} d x=2 \int u e^{u} d u
$$

## Example



## 7-5 Integration Strategy

## Example

$$
\int \frac{\tan ^{3} x}{\cos ^{3} x} d x ; \frac{\tan ^{3} x}{\cos ^{3} x}=\underbrace{\tan ^{3} x \sec ^{3} x}_{u=\sec x}=\underbrace{\frac{\sin ^{3} x}{\cos ^{6} x}}_{u=\cos x}
$$

## Example

$$
\int e^{\sqrt{x}} d x=2 \int u e^{u} d u
$$

## Example

$$
\int \frac{1}{x \sqrt{\ln x}} d x=\int \frac{1}{\sqrt{u}} d u ; \quad \underbrace{\sqrt{\frac{1-x}{1+x}}}_{=u} d x, \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C
$$

## 7-7 Approximation Integration

## Fact

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x \quad \text { (left point approximation) } \\
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad \text { (right point approximation) } \\
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x \quad \text { (midpoint approximation) }
\end{gathered}
$$

## 7-7 Approximation Integration

## Fact

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x \quad \text { (left point approximation) } \\
\int_{a}^{b} f(x) d x & \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad \text { (right point approximation) } \\
\int_{a}^{b} f(x) d x & \approx \sum_{i=1}^{n}\left[\frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}\right] \Delta x \quad \text { (Trapezoidal Rule) }
\end{aligned}
$$

Trapezoidal = average of the left and the right

## 7-7 Approximation Integration

## Definition

The error in an approximation is defined to the

$$
\text { the error }=\text { the exact value }- \text { the approximation. }
$$

## Example

The Trapezoidal Rule for $\int_{1}^{2} \frac{1}{x} d x$ where $n=5$ gives the approximation

$$
T=0.695635
$$

then

$$
\text { error }=\int_{1}^{2} \frac{1}{x} d x-T=\ln 2-T=-0.002488
$$

## 7-7 Approximation Integration

Theorem
(Error Bounds) Suppose

$$
\left|f^{\prime \prime}(x)\right| \leq K \quad \text { for } a \leq x \leq b
$$

Then

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}, \quad\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

where $E_{T}$ and $E_{M}$ denote respectively the errors in the Trapezoidal and Midpoint Rules.

## Example

The Trapezoidal Rule of $\int_{1}^{2} \frac{1}{x} d x$ for $n=5$ yields

$$
\left|E_{T}\right| \leq \frac{2(2-1)^{3}}{12 \cdot 5^{2}}
$$

## 7-7 Approximation Integration

## Theorem

(Error Bounds) Suppose

$$
\left|f^{\prime \prime}(x)\right| \leq K \quad \text { for } a \leq x \leq b
$$

Then

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}, \quad\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

where $E_{T}$ and $E_{M}$ denote respectively the errors in the Trapezoidal and Midpoint Rules.

## Example

How large should we take $n$ in order to guarantee that the Trapezoidal approximation for $\int_{1}^{2} \frac{1}{x} d x$ is accurate within 0.0001 ?

$$
\left|E_{T}\right| \leq \frac{2(2-1)^{3}}{12 \cdot n^{2}}<0.0001
$$

## 7-7 Approximation Integration

## Theorem

(Simpson's Rule) Assume $n$ is an even number.
$\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right.$ where $n$ is even and $\Delta x=(b-a) / n$.

$$
\text { pattern }=1,4,2,4,2, \cdots, 4,2,4,1
$$

## Theorem

(Error Bound) Suppose

$$
\left|f^{(4)}(x)\right| \leq K, \quad a \leq x \leq b
$$

Then

$$
\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}
$$

## 4-4 L'Hospital's Rule

## Theorem

Let $f$ and $g$ be differentiable on an open interval I containing a. Suppose that

$$
\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)
$$

or that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right side exists (or is $\infty$ or $-\infty$ ).

## Examples

$\lim _{x \rightarrow 1} \frac{\ln x}{x-1}, \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}, \lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}, \lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$

## 4-4 L'Hospital's Rule

## Theorem

Let $f$ and $g$ be differentiable on an open interval I containing a. Suppose that

$$
\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)
$$

or that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right side exists (or is $\infty$ or $-\infty$ ).

## Examples

$\lim _{x \rightarrow 0^{+}} x \ln x, \lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right), \lim _{x \rightarrow \infty}\left(e^{x}-x\right)$

## 4-4 L'Hospital's Rule

## Theorem

Let $f$ and $g$ be differentiable on an open interval I containing a. Suppose that

$$
\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)
$$

or that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty .
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right side exists (or is $\infty$ or $-\infty$ ).

## Examples

$\lim _{x \rightarrow 0^{+}}(1+\sin 4 x)^{\cot x}, \lim _{x \rightarrow 0^{+}} x^{x}$

## 7-8 Improper Integrals

## Definitions

Improper integrals of type 1 (over unbounded intervals):
(1)

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

(2)

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow \infty} \int_{t}^{b} f(x) d x
$$

©

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

## Example

Determine whether the (improper) integral $\int_{1}^{\infty} \frac{1}{x} d x$ is convergent or divergent. More generally, how about $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ for $p>0$ ?

## 7-8 Improper Integrals

## Definitions

Improper integrals of type 2 (with discontinuities):
(1) $f$ is discontinuous at $b$ :

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

(2) $f$ is discontinuous at $a$ :

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

(3) $f$ is discontinuous at $c$, where $a<c<b$ :

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

## 7-8 Improper Integrals

## Theorem

(Comparison Test) If $0 \leq g \leq f$, then
(1) If $\int_{a}^{\infty} f(x) d x$ is convergent, then $\int_{a}^{\infty} g(x) d x$ is convergent.
(2) If $\int_{a}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty} f(x) d x$ is divergent.

## Example

$\int_{0}^{\infty} e^{-x^{2}} d x$ is convergent and $\int_{1}^{\infty} \frac{1+e^{-x}}{x} d x$ is divergent.

## Example

$\int_{2}^{5} \frac{1}{\sqrt{x-2}} d x, \int_{0}^{\pi / 2} \sec x d x, \int_{0}^{3} \frac{1}{x-1} d x, \int_{0}^{1} \ln x d x$

## 8-1 Arc Length

## Definition

If $f^{\prime}$ is continuous on $[a, b]$ then the length of the curve $y=f(x)$, $a \leq x \leq b$, is given by

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Using Leibniz notation, the formula can be rewritten as

$$
L=\int_{a}^{b} \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
$$

## Example

Find $L$ for $y^{2}=x^{3}$ between the points $(1,1)$ and $(4,8)$.

## 8-1 Arc Length

## Definition

If $g^{\prime}(y)$ is continuous on $[c, d]$ then the length of the curve $x=g(y)$, $c \leq y \leq d$, is given by

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Using Leibniz notation, the formula can be rewritten as

$$
L=\int_{c}^{d} \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y
$$

## Example

Find $L$ for $y^{2}=x$ between the points $(0,0)$ and $(1,1)$.

## 8-1 Arc Length

## Definition

Given a curve $y=f(x), a \leq x \leq b$, let

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t, \quad a \leq x \leq b
$$

be the arc length from point $(a, f(a))$ to $(x, f(x)) . s(x)$ is called the arc length function. Note that FTC implies that

$$
\begin{gathered}
s^{\prime}(x)=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}, \quad \text { or equivalently, } \\
d s=\sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
\end{gathered}
$$

## Example

Find $s(x)$ for $y=x^{2}-\frac{1}{8} \ln x$ starting at the point $(1,1)$.

## 8-2 Area of a Surface of Revolution

## Definition

Consider the surface obtained by rotating the curve $y=f(x) \geq 0$, $a \leq x \leq b$, about the $x$-axis, the surface area is given by

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{a}^{b} 2 \pi y \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x=\int_{a}^{b} 2 \pi y d s .
$$

For rotation about $y$-axis of $x=g(y), c \leq y \leq d$, we have

$$
S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y=\int_{c}^{d} 2 \pi x \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y=\int_{c}^{d} 2 \pi x d s
$$

## Example

Find $S$ when rotating $y=\sqrt{4-x^{2}},-1 \leq x \leq 1$, about $x$-axis.

## 8-2 Area of a Surface of Revolution

## Definition

Consider the surface obtained by rotating the curve $y=f(x) \geq 0$, $a \leq x \leq b$, about the $x$-axis, the surface area is given by

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{a}^{b} 2 \pi y \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x=\int_{a}^{b} 2 \pi y d s
$$

For rotation about $y$-axis of $x=g(y), c \leq y \leq d$, we have

$$
S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y=\int_{c}^{d} 2 \pi x \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y=\int_{c}^{d} 2 \pi x d s
$$

## Example

Find $S$ when rotating $y=e^{x}, 0 \leq x \leq 1$, about $x$-axis.

## 3-8 Exponential Growth and Decay

## Definition

If $y(t)$ is the value of a quantity $y$ at the time $t$ and if the rate of change of $y$ with respect to $t$ is proportional to its size $y(t)$ at any time $t$, then

$$
\frac{d y}{d t}=k y \quad \text { for some constant } k
$$

and the only solution for this differential equation is

$$
y(t)=y(0) e^{k t}
$$

The constant $k$ is called the relative growth rate of the quantity $y$.

## Example

Suppose the growth rate of a certain population is proportional to the population size $P(t)$, and say, $P(0)=2560$ and $P(10)=3040$. Then the relative growth rate is $k=0.017$ and $P(t)=2560 e^{k t}$.

## 3-8 Exponential Growth and Decay

## Example

The half-life of a certain radioactive element is 1590 years.
(1) Find a formula for the mass $m(t)$ of the element that remains after $t$ years. Suppose $m(0)=100$.
(2) Find the mass $m(1000)$ after 1000 years.
(3) When will the mass be reduced to 30 ?
where $k$ is a constant and $T_{s}$ is the (constant) temperature of surroundinos. Make a change of variable $v(t)=T(t)-T_{s}$ to revirite it as

## 3-8 Exponential Growth and Decay

## Example

The half-life of a certain radioactive element is 1590 years.
(1) Find a formula for the mass $m(t)$ of the element that remains after $t$ years. Suppose $m(0)=100$.
(2) Find the mass $m(1000)$ after 1000 years.
(3) When will the mass be reduced to 30 ?

## Example

Newton's law of cooling as a differential equation:

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

where $k$ is a constant and $T_{s}$ is the (constant) temperature of surroundings. Make a change of variable $y(t)=T(t)-T_{s}$ to rewrite it as $y^{\prime}=k y$.

## 3-8 Exponential Growth and Decay

## Example

Denote by $A(t)$ the amount of a financial investment at time $t$. The continuous compounding of $A$ with interest rate $r$ is governing by the differential equation:

$$
\frac{d A}{d t}=r A(t)
$$

For example, $\$ 1000$ invested for 3 years at $6 \%$ interest rate will has its value

$$
A(3)=1000 e^{(0.06) 3}=1197.22
$$

## 9-1 Modeling with Differential Equations

## Example

The equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

shows that
(1) If $P$ is small, then

$$
\left.\frac{d P}{d t} \approx k P . \text { (Initially, the growth rate is proportional to } P .\right)
$$

(2) If $P>M$, then

$$
\left.\frac{d P}{d t}<0 \text {. ( } P \text { decreases if it ever exceeds the constant } M .\right)
$$

## 9-1 Modeling with Differential Equations

## Example

Show that every member of the family of functions

$$
y=\frac{1+c e^{t}}{1-c e^{t}}, \quad c \text { is any constant }
$$

satisfies the differential equation

$$
y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)
$$

Moreover, the solution of the equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$ satisfying the initial condition $y(0)=2$ is

$$
y=\frac{1+\frac{1}{3} e^{t}}{1-\frac{1}{3} e^{t}}
$$

## 9-3 Separable Equations

## Definition

$$
\frac{d y}{d x}=g(x) f(y)
$$

## Example

$$
y^{\prime}=\frac{x^{2}}{y^{2}}, \quad y(0)=2 .
$$

## Example

$$
y^{\prime}=\frac{6 x^{2}}{2 y+\cos y}
$$

## Example

$$
y^{\prime}=x^{2} y
$$

## 9-3 Separable Equations

## Example

A water tank contains 20 kg of salt dissolved in 5000 L of water. Salted water that contains 0.03 kg of salt per liter of water enters the tank at a rate of $25 \mathrm{~L} /$ minute. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after 30 minutes?

$$
\begin{aligned}
& \qquad y(t)=\text { amount of salt at time } t \\
& y^{\prime}=(\text { rate in })-(\text { rate out }), \quad y(0)=20 . \\
& \text { rate in }=0.03 \frac{\mathrm{~kg}}{\mathrm{~L}} * 25 \frac{\mathrm{~L}}{\min }=0.75 \frac{\mathrm{~kg}}{\mathrm{~min}} \\
& \text { rate out }=\frac{y(t)}{5000} \frac{\mathrm{~kg}}{\mathrm{~L}} * 25 \frac{\mathrm{~L}}{\min }=\frac{y(t)}{200} \frac{\mathrm{~kg}}{\mathrm{~min}}
\end{aligned}
$$

## To be continued

Fact

## Examples

## Example

## To be continued

Fact

## Examples

## Example

## To be continued

Fact

## Examples

## Example

## To be continued

Fact

## Examples

## Example

## Examples

## Example

## Examples

## Example

